ruby/shape.h
Matt Valentine-House bfc66e07b7 Fix Object Movement allocation in GC
When moving Objects between size pools we have to assign a new shape.

This happened during updating references - we tried to create a new shape
tree that mirrored the existing tree, but based on the root shape of the
new size pool.

This causes allocations to happen if the new tree doesn't already exist,
potentially triggering a GC, during GC.

This commit changes object movement to look for a pre-existing new tree
during object movement, and if that tree does not exist, we don't move
the object to the new pool.

This allows us to remove the shape allocation from update references.

Co-Authored-By: Peter Zhu <peter@peterzhu.ca>
2022-12-15 15:27:38 -05:00

235 lines
6.9 KiB
C

#ifndef RUBY_SHAPE_H
#define RUBY_SHAPE_H
#if (SIZEOF_UINT64_T == SIZEOF_VALUE)
#define SIZEOF_SHAPE_T 4
#define SHAPE_IN_BASIC_FLAGS 1
typedef uint32_t attr_index_t;
#else
#define SIZEOF_SHAPE_T 2
#define SHAPE_IN_BASIC_FLAGS 0
typedef uint16_t attr_index_t;
#endif
#define MAX_IVARS (attr_index_t)(-1)
#if SIZEOF_SHAPE_T == 4
typedef uint32_t shape_id_t;
# define SHAPE_ID_NUM_BITS 32
#else
typedef uint16_t shape_id_t;
# define SHAPE_ID_NUM_BITS 16
#endif
# define SHAPE_MASK (((uintptr_t)1 << SHAPE_ID_NUM_BITS) - 1)
# define SHAPE_FLAG_MASK (((VALUE)-1) >> SHAPE_ID_NUM_BITS)
# define SHAPE_FLAG_SHIFT ((SIZEOF_VALUE * 8) - SHAPE_ID_NUM_BITS)
# define SHAPE_BITMAP_SIZE 16384
# define SHAPE_MAX_VARIATIONS 8
# define MAX_SHAPE_ID (SHAPE_MASK - 1)
# define INVALID_SHAPE_ID SHAPE_MASK
# define ROOT_SHAPE_ID 0x0
// We use SIZE_POOL_COUNT number of shape IDs for transitions out of different size pools
// The next available shapd ID will be the SPECIAL_CONST_SHAPE_ID
#if USE_RVARGC && (SIZEOF_UINT64_T == SIZEOF_VALUE)
# define SIZE_POOL_COUNT 5
#else
# define SIZE_POOL_COUNT 1
#endif
# define SPECIAL_CONST_SHAPE_ID (SIZE_POOL_COUNT * 2)
# define OBJ_TOO_COMPLEX_SHAPE_ID (SPECIAL_CONST_SHAPE_ID + 1)
struct rb_shape {
struct rb_id_table * edges; // id_table from ID (ivar) to next shape
ID edge_name; // ID (ivar) for transition from parent to rb_shape
attr_index_t next_iv_index;
uint32_t capacity; // Total capacity of the object with this shape
uint8_t type;
uint8_t size_pool_index;
shape_id_t parent_id;
};
typedef struct rb_shape rb_shape_t;
enum shape_type {
SHAPE_ROOT,
SHAPE_IVAR,
SHAPE_FROZEN,
SHAPE_CAPACITY_CHANGE,
SHAPE_INITIAL_CAPACITY,
SHAPE_T_OBJECT,
SHAPE_OBJ_TOO_COMPLEX,
};
#if SHAPE_IN_BASIC_FLAGS
static inline shape_id_t
RBASIC_SHAPE_ID(VALUE obj)
{
RUBY_ASSERT(!RB_SPECIAL_CONST_P(obj));
return (shape_id_t)(SHAPE_MASK & ((RBASIC(obj)->flags) >> SHAPE_FLAG_SHIFT));
}
static inline void
RBASIC_SET_SHAPE_ID(VALUE obj, shape_id_t shape_id)
{
// Ractors are occupying the upper 32 bits of flags, but only in debug mode
// Object shapes are occupying top bits
RBASIC(obj)->flags &= SHAPE_FLAG_MASK;
RBASIC(obj)->flags |= ((VALUE)(shape_id) << SHAPE_FLAG_SHIFT);
}
static inline shape_id_t
ROBJECT_SHAPE_ID(VALUE obj)
{
RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT);
return RBASIC_SHAPE_ID(obj);
}
static inline void
ROBJECT_SET_SHAPE_ID(VALUE obj, shape_id_t shape_id)
{
RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT);
RBASIC_SET_SHAPE_ID(obj, shape_id);
}
static inline shape_id_t
RCLASS_SHAPE_ID(VALUE obj)
{
RUBY_ASSERT(RB_TYPE_P(obj, T_CLASS) || RB_TYPE_P(obj, T_MODULE));
return RBASIC_SHAPE_ID(obj);
}
#else
static inline shape_id_t
ROBJECT_SHAPE_ID(VALUE obj)
{
RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT);
return (shape_id_t)(SHAPE_MASK & (RBASIC(obj)->flags >> SHAPE_FLAG_SHIFT));
}
static inline void
ROBJECT_SET_SHAPE_ID(VALUE obj, shape_id_t shape_id)
{
RBASIC(obj)->flags &= SHAPE_FLAG_MASK;
RBASIC(obj)->flags |= ((VALUE)(shape_id) << SHAPE_FLAG_SHIFT);
}
MJIT_SYMBOL_EXPORT_BEGIN
shape_id_t rb_rclass_shape_id(VALUE obj);
MJIT_SYMBOL_EXPORT_END
static inline shape_id_t RCLASS_SHAPE_ID(VALUE obj)
{
return rb_rclass_shape_id(obj);
}
#endif
bool rb_shape_root_shape_p(rb_shape_t* shape);
rb_shape_t * rb_shape_get_root_shape(void);
uint8_t rb_shape_id_num_bits(void);
int32_t rb_shape_id_offset(void);
rb_shape_t* rb_shape_get_shape_by_id_without_assertion(shape_id_t shape_id);
rb_shape_t * rb_shape_get_parent(rb_shape_t * shape);
MJIT_SYMBOL_EXPORT_BEGIN
rb_shape_t* rb_shape_get_shape_by_id(shape_id_t shape_id);
void rb_shape_set_shape(VALUE obj, rb_shape_t* shape);
shape_id_t rb_shape_get_shape_id(VALUE obj);
rb_shape_t* rb_shape_get_shape(VALUE obj);
int rb_shape_frozen_shape_p(rb_shape_t* shape);
void rb_shape_transition_shape_frozen(VALUE obj);
void rb_shape_transition_shape_remove_ivar(VALUE obj, ID id, rb_shape_t *shape, VALUE * removed);
rb_shape_t * rb_shape_transition_shape_capa(rb_shape_t * shape, uint32_t new_capacity);
rb_shape_t * rb_shape_get_next_iv_shape(rb_shape_t * shape, ID id);
rb_shape_t* rb_shape_get_next(rb_shape_t* shape, VALUE obj, ID id);
bool rb_shape_get_iv_index(rb_shape_t * shape, ID id, attr_index_t * value);
shape_id_t rb_shape_id(rb_shape_t * shape);
bool rb_shape_obj_too_complex(VALUE obj);
MJIT_SYMBOL_EXPORT_END
rb_shape_t * rb_shape_rebuild_shape(rb_shape_t * initial_shape, rb_shape_t * dest_shape);
static inline uint32_t
ROBJECT_IV_CAPACITY(VALUE obj)
{
RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT);
// Asking for capacity doesn't make sense when the object is using
// a hash table for storing instance variables
RUBY_ASSERT(ROBJECT_SHAPE_ID(obj) != OBJ_TOO_COMPLEX_SHAPE_ID);
return rb_shape_get_shape_by_id(ROBJECT_SHAPE_ID(obj))->capacity;
}
static inline struct rb_id_table *
ROBJECT_IV_HASH(VALUE obj)
{
RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT);
RUBY_ASSERT(ROBJECT_SHAPE_ID(obj) == OBJ_TOO_COMPLEX_SHAPE_ID);
return (struct rb_id_table *)ROBJECT(obj)->as.heap.ivptr;
}
static inline void
ROBJECT_SET_IV_HASH(VALUE obj, const struct rb_id_table *tbl)
{
RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT);
RUBY_ASSERT(ROBJECT_SHAPE_ID(obj) == OBJ_TOO_COMPLEX_SHAPE_ID);
ROBJECT(obj)->as.heap.ivptr = (VALUE *)tbl;
}
size_t rb_id_table_size(const struct rb_id_table *tbl);
static inline uint32_t
ROBJECT_IV_COUNT(VALUE obj)
{
if (ROBJECT_SHAPE_ID(obj) == OBJ_TOO_COMPLEX_SHAPE_ID) {
return (uint32_t)rb_id_table_size(ROBJECT_IV_HASH(obj));
}
else {
RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT);
RUBY_ASSERT(ROBJECT_SHAPE_ID(obj) != OBJ_TOO_COMPLEX_SHAPE_ID);
return rb_shape_get_shape_by_id(ROBJECT_SHAPE_ID(obj))->next_iv_index;
}
}
static inline uint32_t
RBASIC_IV_COUNT(VALUE obj)
{
return rb_shape_get_shape_by_id(rb_shape_get_shape_id(obj))->next_iv_index;
}
static inline uint32_t
RCLASS_IV_COUNT(VALUE obj)
{
RUBY_ASSERT(RB_TYPE_P(obj, RUBY_T_CLASS) || RB_TYPE_P(obj, RUBY_T_MODULE));
uint32_t ivc = rb_shape_get_shape_by_id(RCLASS_SHAPE_ID(obj))->next_iv_index;
return ivc;
}
rb_shape_t * rb_shape_alloc(ID edge_name, rb_shape_t * parent);
rb_shape_t * rb_shape_alloc_with_size_pool_index(ID edge_name, rb_shape_t * parent, uint8_t size_pool_index);
rb_shape_t * rb_shape_alloc_with_parent_id(ID edge_name, shape_id_t parent_id);
rb_shape_t *rb_shape_traverse_from_new_root(rb_shape_t *initial_shape, rb_shape_t *orig_shape);
bool rb_shape_set_shape_id(VALUE obj, shape_id_t shape_id);
VALUE rb_obj_debug_shape(VALUE self, VALUE obj);
VALUE rb_shape_flags_mask(void);
void rb_shape_set_too_complex(VALUE obj);
RUBY_SYMBOL_EXPORT_BEGIN
typedef void each_shape_callback(rb_shape_t * shape, void *data);
void rb_shape_each_shape(each_shape_callback callback, void *data);
size_t rb_shape_memsize(rb_shape_t *shape);
size_t rb_shape_edges_count(rb_shape_t *shape);
size_t rb_shape_depth(rb_shape_t *shape);
RUBY_SYMBOL_EXPORT_END
#endif