ruby/shape.c
Aaron Patterson bbf1d621ba Decrease redblack cache / shape size in debug
When running tests in debug mode, we have tests that try to exhaust the
space used for shapes and the redblack cache.  However, this can cause
Out of Memory issues on some machines, so this commit decreases the
cache sizes when RUBY_DEBUG is enabled
2023-10-26 14:49:42 -07:00

1213 lines
35 KiB
C

#include "vm_core.h"
#include "vm_sync.h"
#include "shape.h"
#include "symbol.h"
#include "id_table.h"
#include "internal/class.h"
#include "internal/gc.h"
#include "internal/symbol.h"
#include "internal/variable.h"
#include "internal/error.h"
#include "variable.h"
#include <stdbool.h>
#ifndef _WIN32
#include <sys/mman.h>
#endif
#ifndef SHAPE_DEBUG
#define SHAPE_DEBUG (VM_CHECK_MODE > 0)
#endif
#if SIZEOF_SHAPE_T == 4
#if RUBY_DEBUG
#define SHAPE_BUFFER_SIZE 0x8000
#else
#define SHAPE_BUFFER_SIZE 0x80000
#endif
#else
#define SHAPE_BUFFER_SIZE 0x8000
#endif
#define REDBLACK_CACHE_SIZE (SHAPE_BUFFER_SIZE * 32)
#define SINGLE_CHILD_TAG 0x1
#define TAG_SINGLE_CHILD(x) (struct rb_id_table *)((uintptr_t)x | SINGLE_CHILD_TAG)
#define SINGLE_CHILD_MASK (~((uintptr_t)SINGLE_CHILD_TAG))
#define SINGLE_CHILD_P(x) (((uintptr_t)x) & SINGLE_CHILD_TAG)
#define SINGLE_CHILD(x) (rb_shape_t *)((uintptr_t)x & SINGLE_CHILD_MASK)
#define ANCESTOR_CACHE_THRESHOLD 10
#define MAX_SHAPE_ID (SHAPE_BUFFER_SIZE - 1)
static ID id_frozen;
static ID id_t_object;
static ID size_pool_edge_names[SIZE_POOL_COUNT];
#define LEAF 0
#define BLACK 0x0
#define RED 0x1
static redblack_node_t *
redblack_left(redblack_node_t * node)
{
if (node->l == LEAF) {
return LEAF;
}
else {
RUBY_ASSERT(node->l < GET_SHAPE_TREE()->cache_size);
redblack_node_t * left = &GET_SHAPE_TREE()->shape_cache[node->l - 1];
return left;
}
}
static redblack_node_t *
redblack_right(redblack_node_t * node)
{
if (node->r == LEAF) {
return LEAF;
}
else {
RUBY_ASSERT(node->r < GET_SHAPE_TREE()->cache_size);
redblack_node_t * right = &GET_SHAPE_TREE()->shape_cache[node->r - 1];
return right;
}
}
static redblack_node_t *
redblack_find(redblack_node_t * tree, ID key)
{
if (tree == LEAF) {
return LEAF;
}
else {
if (tree->key == key) {
return tree;
}
else {
if (key < tree->key) {
return redblack_find(redblack_left(tree), key);
}
else {
return redblack_find(redblack_right(tree), key);
}
}
}
}
static inline char
redblack_color(redblack_node_t * node)
{
return node && ((uintptr_t)node->value & RED);
}
static inline bool
redblack_red_p(redblack_node_t * node)
{
return redblack_color(node) == RED;
}
static inline rb_shape_t *
redblack_value(redblack_node_t * node)
{
// Color is stored in the bottom bit of the shape pointer
// Mask away the bit so we get the actual pointer back
return (rb_shape_t *)((uintptr_t)node->value & (((uintptr_t)-1) - 1));
}
static redblack_id_t
redblack_id_for(redblack_node_t * node)
{
RUBY_ASSERT(node || node == LEAF);
if (node == LEAF) {
return 0;
}
else {
redblack_node_t * redblack_nodes = GET_SHAPE_TREE()->shape_cache;
redblack_id_t id = (redblack_id_t)(node - redblack_nodes);
return id + 1;
}
}
static redblack_node_t *
redblack_new(char color, ID key, rb_shape_t * value, redblack_node_t * left, redblack_node_t * right)
{
if (GET_SHAPE_TREE()->cache_size + 1 >= REDBLACK_CACHE_SIZE) {
// We're out of cache, just quit
return LEAF;
}
redblack_node_t * redblack_nodes = GET_SHAPE_TREE()->shape_cache;
redblack_node_t * node = &redblack_nodes[(GET_SHAPE_TREE()->cache_size)++];
node->key = key;
node->value = (rb_shape_t *)((uintptr_t)value | color);
node->l = redblack_id_for(left);
node->r = redblack_id_for(right);
return node;
}
static redblack_node_t *
redblack_balance(char color, ID key, rb_shape_t * value, redblack_node_t * left, redblack_node_t * right)
{
if (color == BLACK) {
ID z, y, x;
rb_shape_t * z_, * y_, * x_;
redblack_node_t * a, * b, * c, * d;
if (redblack_red_p(left) && redblack_red_p(redblack_left(left))) {
z = key;
z_ = value;
d = right;
y = left->key;
y_ = redblack_value(left);
c = redblack_right(left);
x = redblack_left(left)->key;
x_ = redblack_value(redblack_left(left));
a = redblack_left(redblack_left(left));
b = redblack_right(redblack_left(left));
}
else if (redblack_red_p(left) && redblack_red_p(redblack_right(left))) {
z = key;
z_ = value;
d = right;
x = left->key;
x_ = redblack_value(left);
a = redblack_left(left);
y = redblack_right(left)->key;
y_ = redblack_value(redblack_right(left));
b = redblack_left(redblack_right(left));
c = redblack_right(redblack_right(left));
}
else if (redblack_red_p(right) && redblack_red_p(redblack_left(right))) {
x = key;
x_ = value;
a = left;
z = right->key;
z_ = redblack_value(right);
d = redblack_right(right);
y = redblack_left(right)->key;
y_ = redblack_value(redblack_left(right));
b = redblack_left(redblack_left(right));
c = redblack_right(redblack_left(right));
}
else if (redblack_red_p(right) && redblack_red_p(redblack_right(right))) {
x = key;
x_ = value;
a = left;
y = right->key;
y_ = redblack_value(right);
b = redblack_left(right);
z = redblack_right(right)->key;
z_ = redblack_value(redblack_right(right));
c = redblack_left(redblack_right(right));
d = redblack_right(redblack_right(right));
}
else {
return redblack_new(color, key, value, left, right);
}
return redblack_new(
RED, y, y_,
redblack_new(BLACK, x, x_, a, b),
redblack_new(BLACK, z, z_, c, d));
}
return redblack_new(color, key, value, left, right);
}
static redblack_node_t *
redblack_insert_aux(redblack_node_t * tree, ID key, rb_shape_t * value)
{
if (tree == LEAF) {
return redblack_new(RED, key, value, LEAF, LEAF);
}
else {
if (key < tree->key) {
return redblack_balance(redblack_color(tree),
tree->key,
redblack_value(tree),
redblack_insert_aux(redblack_left(tree), key, value),
redblack_right(tree));
}
else {
if (key > tree->key) {
return redblack_balance(redblack_color(tree),
tree->key,
redblack_value(tree),
redblack_left(tree),
redblack_insert_aux(redblack_right(tree), key, value));
}
else {
return tree;
}
}
}
}
static redblack_node_t *
redblack_force_black(redblack_node_t * node)
{
node->value = redblack_value(node);
return node;
}
static redblack_node_t *
redblack_insert(redblack_node_t * tree, ID key, rb_shape_t * value)
{
redblack_node_t * root = redblack_insert_aux(tree, key, value);
if (redblack_red_p(root)) {
return redblack_force_black(root);
}
else {
return root;
}
}
rb_shape_tree_t *rb_shape_tree_ptr = NULL;
/*
* Shape getters
*/
rb_shape_t *
rb_shape_get_root_shape(void)
{
return GET_SHAPE_TREE()->root_shape;
}
shape_id_t
rb_shape_id(rb_shape_t * shape)
{
return (shape_id_t)(shape - GET_SHAPE_TREE()->shape_list);
}
void
rb_shape_each_shape(each_shape_callback callback, void *data)
{
rb_shape_t *cursor = rb_shape_get_root_shape();
rb_shape_t *end = rb_shape_get_shape_by_id(GET_SHAPE_TREE()->next_shape_id);
while (cursor < end) {
callback(cursor, data);
cursor += 1;
}
}
RUBY_FUNC_EXPORTED rb_shape_t*
rb_shape_get_shape_by_id(shape_id_t shape_id)
{
RUBY_ASSERT(shape_id != INVALID_SHAPE_ID);
rb_shape_t *shape = &GET_SHAPE_TREE()->shape_list[shape_id];
return shape;
}
rb_shape_t *
rb_shape_get_parent(rb_shape_t * shape)
{
return rb_shape_get_shape_by_id(shape->parent_id);
}
#if !SHAPE_IN_BASIC_FLAGS
shape_id_t rb_generic_shape_id(VALUE obj);
#endif
RUBY_FUNC_EXPORTED shape_id_t
rb_shape_get_shape_id(VALUE obj)
{
if (RB_SPECIAL_CONST_P(obj)) {
return SPECIAL_CONST_SHAPE_ID;
}
#if SHAPE_IN_BASIC_FLAGS
return RBASIC_SHAPE_ID(obj);
#else
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
return ROBJECT_SHAPE_ID(obj);
break;
case T_CLASS:
case T_MODULE:
return RCLASS_SHAPE_ID(obj);
default:
return rb_generic_shape_id(obj);
}
#endif
}
size_t
rb_shape_depth(rb_shape_t * shape)
{
size_t depth = 1;
while (shape->parent_id != INVALID_SHAPE_ID) {
depth++;
shape = rb_shape_get_parent(shape);
}
return depth;
}
rb_shape_t*
rb_shape_get_shape(VALUE obj)
{
return rb_shape_get_shape_by_id(rb_shape_get_shape_id(obj));
}
static rb_shape_t *
shape_alloc(void)
{
shape_id_t shape_id = GET_SHAPE_TREE()->next_shape_id;
GET_SHAPE_TREE()->next_shape_id++;
if (shape_id == (MAX_SHAPE_ID + 1)) {
// TODO: Make an OutOfShapesError ??
rb_bug("Out of shapes");
}
return &GET_SHAPE_TREE()->shape_list[shape_id];
}
static rb_shape_t *
rb_shape_alloc_with_parent_id(ID edge_name, shape_id_t parent_id)
{
rb_shape_t * shape = shape_alloc();
shape->edge_name = edge_name;
shape->next_iv_index = 0;
shape->parent_id = parent_id;
shape->edges = NULL;
return shape;
}
static rb_shape_t *
rb_shape_alloc(ID edge_name, rb_shape_t * parent, enum shape_type type)
{
rb_shape_t * shape = rb_shape_alloc_with_parent_id(edge_name, rb_shape_id(parent));
shape->type = (uint8_t)type;
shape->size_pool_index = parent->size_pool_index;
shape->capacity = parent->capacity;
shape->edges = 0;
return shape;
}
#ifdef HAVE_MMAP
static redblack_node_t *
redblack_cache_ancestors(rb_shape_t * shape)
{
if (!(shape->ancestor_index || shape->parent_id == INVALID_SHAPE_ID)) {
redblack_node_t * parent_index;
parent_index = redblack_cache_ancestors(rb_shape_get_parent(shape));
if (shape->type == SHAPE_IVAR) {
shape->ancestor_index = redblack_insert(parent_index, shape->edge_name, shape);
}
else {
shape->ancestor_index = parent_index;
}
}
return shape->ancestor_index;
}
#else
static redblack_node_t *
redblack_cache_ancestors(rb_shape_t * shape)
{
return LEAF;
}
#endif
static rb_shape_t *
rb_shape_alloc_new_child(ID id, rb_shape_t * shape, enum shape_type shape_type)
{
rb_shape_t * new_shape = rb_shape_alloc(id, shape, shape_type);
switch (shape_type) {
case SHAPE_IVAR:
new_shape->next_iv_index = shape->next_iv_index + 1;
if (new_shape->next_iv_index > ANCESTOR_CACHE_THRESHOLD) {
redblack_cache_ancestors(new_shape);
}
break;
case SHAPE_CAPACITY_CHANGE:
case SHAPE_FROZEN:
case SHAPE_T_OBJECT:
new_shape->next_iv_index = shape->next_iv_index;
break;
case SHAPE_OBJ_TOO_COMPLEX:
case SHAPE_INITIAL_CAPACITY:
case SHAPE_ROOT:
rb_bug("Unreachable");
break;
}
return new_shape;
}
static rb_shape_t*
get_next_shape_internal(rb_shape_t * shape, ID id, enum shape_type shape_type, bool * variation_created, bool new_variations_allowed)
{
rb_shape_t *res = NULL;
// There should never be outgoing edges from "too complex"
RUBY_ASSERT(rb_shape_id(shape) != OBJ_TOO_COMPLEX_SHAPE_ID);
*variation_created = false;
if (GET_SHAPE_TREE()->next_shape_id <= MAX_SHAPE_ID) {
RB_VM_LOCK_ENTER();
{
// If the current shape has children
if (shape->edges) {
// Check if it only has one child
if (SINGLE_CHILD_P(shape->edges)) {
rb_shape_t * child = SINGLE_CHILD(shape->edges);
// If the one child has a matching edge name, then great,
// we found what we want.
if (child->edge_name == id) {
res = child;
}
else {
// Otherwise we're going to have to create a new shape
// and insert it as a child node, so create an id
// table and insert the existing child
shape->edges = rb_id_table_create(2);
rb_id_table_insert(shape->edges, child->edge_name, (VALUE)child);
}
}
else {
// If it has more than one child, do a hash lookup to find it.
VALUE lookup_result;
if (rb_id_table_lookup(shape->edges, id, &lookup_result)) {
res = (rb_shape_t *)lookup_result;
}
}
// If the shape we were looking for above was found,
// then `res` will be set to the child. If it isn't set, then
// we know we need a new child shape, and that we must insert
// it in to the table.
if (!res) {
if (new_variations_allowed) {
*variation_created = true;
rb_shape_t * new_shape = rb_shape_alloc_new_child(id, shape, shape_type);
rb_id_table_insert(shape->edges, id, (VALUE)new_shape);
res = new_shape;
}
else {
res = rb_shape_get_shape_by_id(OBJ_TOO_COMPLEX_SHAPE_ID);
}
}
}
else {
// If the shape didn't have any outgoing edges, then create
// the new outgoing edge and tag the pointer.
rb_shape_t * new_shape = rb_shape_alloc_new_child(id, shape, shape_type);
shape->edges = TAG_SINGLE_CHILD(new_shape);
res = new_shape;
}
}
RB_VM_LOCK_LEAVE();
}
else {
res = rb_shape_get_shape_by_id(OBJ_TOO_COMPLEX_SHAPE_ID);
}
return res;
}
int
rb_shape_frozen_shape_p(rb_shape_t* shape)
{
return SHAPE_FROZEN == (enum shape_type)shape->type;
}
static void
move_iv(VALUE obj, ID id, attr_index_t from, attr_index_t to)
{
switch(BUILTIN_TYPE(obj)) {
case T_CLASS:
case T_MODULE:
RCLASS_IVPTR(obj)[to] = RCLASS_IVPTR(obj)[from];
break;
case T_OBJECT:
RUBY_ASSERT(!rb_shape_obj_too_complex(obj));
ROBJECT_IVPTR(obj)[to] = ROBJECT_IVPTR(obj)[from];
break;
default: {
struct gen_ivtbl *ivtbl;
rb_gen_ivtbl_get(obj, id, &ivtbl);
ivtbl->ivptr[to] = ivtbl->ivptr[from];
break;
}
}
}
static rb_shape_t *
remove_shape_recursive(VALUE obj, ID id, rb_shape_t * shape, VALUE * removed)
{
if (shape->parent_id == INVALID_SHAPE_ID) {
// We've hit the top of the shape tree and couldn't find the
// IV we wanted to remove, so return NULL
return NULL;
}
else {
if (shape->type == SHAPE_IVAR && shape->edge_name == id) {
// We've hit the edge we wanted to remove, return it's _parent_
// as the new parent while we go back down the stack.
attr_index_t index = shape->next_iv_index - 1;
switch(BUILTIN_TYPE(obj)) {
case T_CLASS:
case T_MODULE:
*removed = RCLASS_IVPTR(obj)[index];
break;
case T_OBJECT:
*removed = ROBJECT_IVPTR(obj)[index];
break;
default: {
struct gen_ivtbl *ivtbl;
rb_gen_ivtbl_get(obj, id, &ivtbl);
*removed = ivtbl->ivptr[index];
break;
}
}
return rb_shape_get_parent(shape);
}
else {
// This isn't the IV we want to remove, keep walking up.
rb_shape_t * new_parent = remove_shape_recursive(obj, id, rb_shape_get_parent(shape), removed);
// We found a new parent. Create a child of the new parent that
// has the same attributes as this shape.
if (new_parent) {
bool dont_care;
rb_shape_t * new_child = get_next_shape_internal(new_parent, shape->edge_name, shape->type, &dont_care, true);
new_child->capacity = shape->capacity;
if (new_child->type == SHAPE_IVAR) {
move_iv(obj, id, shape->next_iv_index - 1, new_child->next_iv_index - 1);
}
return new_child;
}
else {
// We went all the way to the top of the shape tree and couldn't
// find an IV to remove, so return NULL
return NULL;
}
}
}
}
void
rb_shape_transition_shape_remove_ivar(VALUE obj, ID id, rb_shape_t *shape, VALUE * removed)
{
rb_shape_t * new_shape = remove_shape_recursive(obj, id, shape, removed);
if (new_shape) {
rb_shape_set_shape(obj, new_shape);
}
}
rb_shape_t *
rb_shape_transition_shape_frozen(VALUE obj)
{
rb_shape_t* shape = rb_shape_get_shape(obj);
RUBY_ASSERT(shape);
RUBY_ASSERT(RB_OBJ_FROZEN(obj));
if (rb_shape_frozen_shape_p(shape) || rb_shape_obj_too_complex(obj)) {
return shape;
}
rb_shape_t* next_shape;
if (shape == rb_shape_get_root_shape()) {
return rb_shape_get_shape_by_id(SPECIAL_CONST_SHAPE_ID);
}
bool dont_care;
next_shape = get_next_shape_internal(shape, (ID)id_frozen, SHAPE_FROZEN, &dont_care, true);
RUBY_ASSERT(next_shape);
return next_shape;
}
/*
* This function is used for assertions where we don't want to increment
* max_iv_count
*/
rb_shape_t *
rb_shape_get_next_iv_shape(rb_shape_t* shape, ID id)
{
RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
bool dont_care;
return get_next_shape_internal(shape, id, SHAPE_IVAR, &dont_care, true);
}
rb_shape_t *
rb_shape_get_next(rb_shape_t* shape, VALUE obj, ID id)
{
RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
RUBY_ASSERT(shape->type != SHAPE_OBJ_TOO_COMPLEX);
bool allow_new_shape = true;
if (BUILTIN_TYPE(obj) == T_OBJECT) {
VALUE klass = rb_obj_class(obj);
allow_new_shape = RCLASS_EXT(klass)->variation_count < SHAPE_MAX_VARIATIONS;
}
bool variation_created = false;
rb_shape_t * new_shape = get_next_shape_internal(shape, id, SHAPE_IVAR, &variation_created, allow_new_shape);
// Check if we should update max_iv_count on the object's class
if (BUILTIN_TYPE(obj) == T_OBJECT) {
VALUE klass = rb_obj_class(obj);
if (new_shape->next_iv_index > RCLASS_EXT(klass)->max_iv_count) {
RCLASS_EXT(klass)->max_iv_count = new_shape->next_iv_index;
}
if (variation_created) {
RCLASS_EXT(klass)->variation_count++;
if (rb_warning_category_enabled_p(RB_WARN_CATEGORY_PERFORMANCE)) {
if (RCLASS_EXT(klass)->variation_count >= SHAPE_MAX_VARIATIONS) {
rb_category_warn(
RB_WARN_CATEGORY_PERFORMANCE,
"Maximum shapes variations (%d) reached by %"PRIsVALUE", instance variables accesses will be slower.",
SHAPE_MAX_VARIATIONS,
rb_class_path(klass)
);
}
}
}
}
return new_shape;
}
static inline rb_shape_t *
rb_shape_transition_shape_capa_create(rb_shape_t* shape, size_t new_capacity)
{
RUBY_ASSERT(new_capacity < (size_t)MAX_IVARS);
ID edge_name = rb_make_temporary_id(new_capacity);
bool dont_care;
rb_shape_t * new_shape = get_next_shape_internal(shape, edge_name, SHAPE_CAPACITY_CHANGE, &dont_care, true);
RUBY_ASSERT(rb_shape_id(new_shape) != OBJ_TOO_COMPLEX_SHAPE_ID);
new_shape->capacity = (uint32_t)new_capacity;
return new_shape;
}
rb_shape_t *
rb_shape_transition_shape_capa(rb_shape_t* shape)
{
return rb_shape_transition_shape_capa_create(shape, rb_malloc_grow_capa(shape->capacity, sizeof(VALUE)));
}
bool
rb_shape_get_iv_index(rb_shape_t * shape, ID id, attr_index_t *value)
{
// It doesn't make sense to ask for the index of an IV that's stored
// on an object that is "too complex" as it uses a hash for storing IVs
RUBY_ASSERT(rb_shape_id(shape) != OBJ_TOO_COMPLEX_SHAPE_ID);
while (shape->parent_id != INVALID_SHAPE_ID) {
// Try the ancestor cache if it's available
if (shape->ancestor_index && shape->next_iv_index >= ANCESTOR_CACHE_THRESHOLD) {
redblack_node_t * node = redblack_find(shape->ancestor_index, id);
if (node) {
rb_shape_t * shape = redblack_value(node);
*value = shape->next_iv_index - 1;
return true;
}
else {
return false;
}
}
else {
if (shape->edge_name == id) {
enum shape_type shape_type;
shape_type = (enum shape_type)shape->type;
switch (shape_type) {
case SHAPE_IVAR:
RUBY_ASSERT(shape->next_iv_index > 0);
*value = shape->next_iv_index - 1;
return true;
case SHAPE_CAPACITY_CHANGE:
case SHAPE_ROOT:
case SHAPE_INITIAL_CAPACITY:
case SHAPE_T_OBJECT:
return false;
case SHAPE_OBJ_TOO_COMPLEX:
case SHAPE_FROZEN:
rb_bug("Ivar should not exist on transition");
}
}
}
shape = rb_shape_get_parent(shape);
}
return false;
}
void
rb_shape_set_shape(VALUE obj, rb_shape_t* shape)
{
rb_shape_set_shape_id(obj, rb_shape_id(shape));
}
int32_t
rb_shape_id_offset(void)
{
return sizeof(uintptr_t) - SHAPE_ID_NUM_BITS / sizeof(uintptr_t);
}
rb_shape_t *
rb_shape_traverse_from_new_root(rb_shape_t *initial_shape, rb_shape_t *dest_shape)
{
RUBY_ASSERT(initial_shape->type == SHAPE_T_OBJECT);
rb_shape_t *next_shape = initial_shape;
if (dest_shape->type != initial_shape->type) {
next_shape = rb_shape_traverse_from_new_root(initial_shape, rb_shape_get_parent(dest_shape));
if (!next_shape) {
return NULL;
}
}
switch ((enum shape_type)dest_shape->type) {
case SHAPE_IVAR:
case SHAPE_FROZEN:
if (!next_shape->edges) {
return NULL;
}
VALUE lookup_result;
if (SINGLE_CHILD_P(next_shape->edges)) {
rb_shape_t * child = SINGLE_CHILD(next_shape->edges);
if (child->edge_name == dest_shape->edge_name) {
return child;
}
else {
return NULL;
}
}
else {
if (rb_id_table_lookup(next_shape->edges, dest_shape->edge_name, &lookup_result)) {
next_shape = (rb_shape_t *)lookup_result;
}
else {
return NULL;
}
}
break;
case SHAPE_ROOT:
case SHAPE_CAPACITY_CHANGE:
case SHAPE_INITIAL_CAPACITY:
case SHAPE_T_OBJECT:
break;
case SHAPE_OBJ_TOO_COMPLEX:
rb_bug("Unreachable");
break;
}
return next_shape;
}
rb_shape_t *
rb_shape_rebuild_shape(rb_shape_t * initial_shape, rb_shape_t * dest_shape)
{
rb_shape_t * midway_shape;
RUBY_ASSERT(initial_shape->type == SHAPE_T_OBJECT);
if (dest_shape->type != initial_shape->type) {
midway_shape = rb_shape_rebuild_shape(initial_shape, rb_shape_get_parent(dest_shape));
}
else {
midway_shape = initial_shape;
}
switch ((enum shape_type)dest_shape->type) {
case SHAPE_IVAR:
if (midway_shape->capacity <= midway_shape->next_iv_index) {
// There isn't enough room to write this IV, so we need to increase the capacity
midway_shape = rb_shape_transition_shape_capa(midway_shape);
}
midway_shape = rb_shape_get_next_iv_shape(midway_shape, dest_shape->edge_name);
break;
case SHAPE_ROOT:
case SHAPE_FROZEN:
case SHAPE_CAPACITY_CHANGE:
case SHAPE_INITIAL_CAPACITY:
case SHAPE_T_OBJECT:
break;
case SHAPE_OBJ_TOO_COMPLEX:
rb_bug("Unreachable");
break;
}
return midway_shape;
}
RUBY_FUNC_EXPORTED bool
rb_shape_obj_too_complex(VALUE obj)
{
return rb_shape_get_shape_id(obj) == OBJ_TOO_COMPLEX_SHAPE_ID;
}
void
rb_shape_set_too_complex(VALUE obj)
{
RUBY_ASSERT(!rb_shape_obj_too_complex(obj));
rb_shape_set_shape_id(obj, OBJ_TOO_COMPLEX_SHAPE_ID);
}
size_t
rb_shape_edges_count(rb_shape_t *shape)
{
if (shape->edges) {
if (SINGLE_CHILD_P(shape->edges)) {
return 1;
}
else {
return rb_id_table_size(shape->edges);
}
}
return 0;
}
size_t
rb_shape_memsize(rb_shape_t *shape)
{
size_t memsize = sizeof(rb_shape_t);
if (shape->edges && !SINGLE_CHILD_P(shape->edges)) {
memsize += rb_id_table_memsize(shape->edges);
}
return memsize;
}
#if SHAPE_DEBUG
/*
* Exposing Shape to Ruby via RubyVM.debug_shape
*/
/* :nodoc: */
static VALUE
rb_shape_too_complex(VALUE self)
{
rb_shape_t * shape;
shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
if (rb_shape_id(shape) == OBJ_TOO_COMPLEX_SHAPE_ID) {
return Qtrue;
}
else {
return Qfalse;
}
}
static VALUE
parse_key(ID key)
{
if (is_instance_id(key)) {
return ID2SYM(key);
}
return LONG2NUM(key);
}
static VALUE rb_shape_edge_name(rb_shape_t * shape);
static VALUE
rb_shape_t_to_rb_cShape(rb_shape_t *shape)
{
VALUE rb_cShape = rb_const_get(rb_cRubyVM, rb_intern("Shape"));
VALUE obj = rb_struct_new(rb_cShape,
INT2NUM(rb_shape_id(shape)),
INT2NUM(shape->parent_id),
rb_shape_edge_name(shape),
INT2NUM(shape->next_iv_index),
INT2NUM(shape->size_pool_index),
INT2NUM(shape->type),
INT2NUM(shape->capacity));
rb_obj_freeze(obj);
return obj;
}
static enum rb_id_table_iterator_result
rb_edges_to_hash(ID key, VALUE value, void *ref)
{
rb_hash_aset(*(VALUE *)ref, parse_key(key), rb_shape_t_to_rb_cShape((rb_shape_t*)value));
return ID_TABLE_CONTINUE;
}
/* :nodoc: */
static VALUE
rb_shape_edges(VALUE self)
{
rb_shape_t* shape;
shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
VALUE hash = rb_hash_new();
if (shape->edges) {
if (SINGLE_CHILD_P(shape->edges)) {
rb_shape_t * child = SINGLE_CHILD(shape->edges);
rb_edges_to_hash(child->edge_name, (VALUE)child, &hash);
}
else {
rb_id_table_foreach(shape->edges, rb_edges_to_hash, &hash);
}
}
return hash;
}
static VALUE
rb_shape_edge_name(rb_shape_t * shape)
{
if (shape->edge_name) {
if (is_instance_id(shape->edge_name)) {
return ID2SYM(shape->edge_name);
}
return INT2NUM(shape->capacity);
}
return Qnil;
}
/* :nodoc: */
static VALUE
rb_shape_export_depth(VALUE self)
{
rb_shape_t* shape;
shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
return SIZET2NUM(rb_shape_depth(shape));
}
/* :nodoc: */
static VALUE
rb_shape_parent(VALUE self)
{
rb_shape_t * shape;
shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
if (shape->parent_id != INVALID_SHAPE_ID) {
return rb_shape_t_to_rb_cShape(rb_shape_get_parent(shape));
}
else {
return Qnil;
}
}
/* :nodoc: */
static VALUE
rb_shape_debug_shape(VALUE self, VALUE obj)
{
return rb_shape_t_to_rb_cShape(rb_shape_get_shape(obj));
}
/* :nodoc: */
static VALUE
rb_shape_root_shape(VALUE self)
{
return rb_shape_t_to_rb_cShape(rb_shape_get_root_shape());
}
/* :nodoc: */
static VALUE
rb_shape_shapes_available(VALUE self)
{
return INT2NUM(MAX_SHAPE_ID - (GET_SHAPE_TREE()->next_shape_id - 1));
}
VALUE rb_obj_shape(rb_shape_t* shape);
static enum rb_id_table_iterator_result collect_keys_and_values(ID key, VALUE value, void *ref)
{
rb_hash_aset(*(VALUE *)ref, parse_key(key), rb_obj_shape((rb_shape_t*)value));
return ID_TABLE_CONTINUE;
}
static VALUE edges(struct rb_id_table* edges)
{
VALUE hash = rb_hash_new();
if (SINGLE_CHILD_P(edges)) {
rb_shape_t * child = SINGLE_CHILD(edges);
collect_keys_and_values(child->edge_name, (VALUE)child, &hash);
}
else {
rb_id_table_foreach(edges, collect_keys_and_values, &hash);
}
return hash;
}
/* :nodoc: */
VALUE
rb_obj_shape(rb_shape_t* shape)
{
VALUE rb_shape = rb_hash_new();
rb_hash_aset(rb_shape, ID2SYM(rb_intern("id")), INT2NUM(rb_shape_id(shape)));
rb_hash_aset(rb_shape, ID2SYM(rb_intern("edges")), edges(shape->edges));
if (shape == rb_shape_get_root_shape()) {
rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(ROOT_SHAPE_ID));
}
else {
rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(shape->parent_id));
}
rb_hash_aset(rb_shape, ID2SYM(rb_intern("edge_name")), rb_id2str(shape->edge_name));
return rb_shape;
}
/* :nodoc: */
static VALUE
shape_transition_tree(VALUE self)
{
return rb_obj_shape(rb_shape_get_root_shape());
}
/* :nodoc: */
static VALUE
rb_shape_find_by_id(VALUE mod, VALUE id)
{
shape_id_t shape_id = NUM2UINT(id);
if (shape_id >= GET_SHAPE_TREE()->next_shape_id) {
rb_raise(rb_eArgError, "Shape ID %d is out of bounds\n", shape_id);
}
return rb_shape_t_to_rb_cShape(rb_shape_get_shape_by_id(shape_id));
}
#endif
#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif
void
Init_default_shapes(void)
{
rb_shape_tree_t *st = ruby_mimmalloc(sizeof(rb_shape_tree_t));
memset(st, 0, sizeof(rb_shape_tree_t));
rb_shape_tree_ptr = st;
#ifdef HAVE_MMAP
rb_shape_tree_ptr->shape_list = (rb_shape_t *)mmap(NULL, rb_size_mul_or_raise(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t), rb_eRuntimeError),
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (GET_SHAPE_TREE()->shape_list == MAP_FAILED) {
GET_SHAPE_TREE()->shape_list = 0;
}
#else
GET_SHAPE_TREE()->shape_list = xcalloc(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t));
#endif
if (!GET_SHAPE_TREE()->shape_list) {
rb_memerror();
}
id_frozen = rb_make_internal_id();
id_t_object = rb_make_internal_id();
#ifdef HAVE_MMAP
rb_shape_tree_ptr->shape_cache = (redblack_node_t *)mmap(NULL, rb_size_mul_or_raise(REDBLACK_CACHE_SIZE, sizeof(redblack_node_t), rb_eRuntimeError),
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
rb_shape_tree_ptr->cache_size = 0;
#endif
// Shapes by size pool
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
size_pool_edge_names[i] = rb_make_internal_id();
}
// Root shape
rb_shape_t * root = rb_shape_alloc_with_parent_id(0, INVALID_SHAPE_ID);
root->capacity = (uint32_t)((rb_size_pool_slot_size(0) - offsetof(struct RObject, as.ary)) / sizeof(VALUE));
root->type = SHAPE_ROOT;
root->size_pool_index = 0;
GET_SHAPE_TREE()->root_shape = root;
RUBY_ASSERT(rb_shape_id(GET_SHAPE_TREE()->root_shape) == ROOT_SHAPE_ID);
// Shapes by size pool
for (int i = 1; i < SIZE_POOL_COUNT; i++) {
size_t capa = ((rb_size_pool_slot_size(i) - offsetof(struct RObject, as.ary)) / sizeof(VALUE));
rb_shape_t * new_shape = rb_shape_transition_shape_capa_create(root, capa);
new_shape->type = SHAPE_INITIAL_CAPACITY;
new_shape->size_pool_index = i;
new_shape->ancestor_index = LEAF;
RUBY_ASSERT(rb_shape_id(new_shape) == (shape_id_t)i);
}
// Make shapes for T_OBJECT
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_shape_t * shape = rb_shape_get_shape_by_id(i);
bool dont_care;
rb_shape_t * t_object_shape =
get_next_shape_internal(shape, id_t_object, SHAPE_T_OBJECT, &dont_care, true);
t_object_shape->edges = rb_id_table_create(0);
t_object_shape->ancestor_index = LEAF;
RUBY_ASSERT(rb_shape_id(t_object_shape) == (shape_id_t)(i + SIZE_POOL_COUNT));
}
bool dont_care;
// Special const shape
#if RUBY_DEBUG
rb_shape_t * special_const_shape =
#endif
get_next_shape_internal(root, (ID)id_frozen, SHAPE_FROZEN, &dont_care, true);
RUBY_ASSERT(rb_shape_id(special_const_shape) == SPECIAL_CONST_SHAPE_ID);
RUBY_ASSERT(SPECIAL_CONST_SHAPE_ID == (GET_SHAPE_TREE()->next_shape_id - 1));
RUBY_ASSERT(rb_shape_frozen_shape_p(special_const_shape));
rb_shape_t * hash_fallback_shape = rb_shape_alloc_with_parent_id(0, ROOT_SHAPE_ID);
hash_fallback_shape->type = SHAPE_OBJ_TOO_COMPLEX;
hash_fallback_shape->size_pool_index = 0;
RUBY_ASSERT(OBJ_TOO_COMPLEX_SHAPE_ID == (GET_SHAPE_TREE()->next_shape_id - 1));
RUBY_ASSERT(rb_shape_id(hash_fallback_shape) == OBJ_TOO_COMPLEX_SHAPE_ID);
}
void
Init_shape(void)
{
#if SHAPE_DEBUG
VALUE rb_cShape = rb_struct_define_under(rb_cRubyVM, "Shape",
"id",
"parent_id",
"edge_name",
"next_iv_index",
"size_pool_index",
"type",
"capacity",
NULL);
rb_define_method(rb_cShape, "parent", rb_shape_parent, 0);
rb_define_method(rb_cShape, "edges", rb_shape_edges, 0);
rb_define_method(rb_cShape, "depth", rb_shape_export_depth, 0);
rb_define_method(rb_cShape, "too_complex?", rb_shape_too_complex, 0);
rb_define_const(rb_cShape, "SHAPE_ROOT", INT2NUM(SHAPE_ROOT));
rb_define_const(rb_cShape, "SHAPE_IVAR", INT2NUM(SHAPE_IVAR));
rb_define_const(rb_cShape, "SHAPE_T_OBJECT", INT2NUM(SHAPE_T_OBJECT));
rb_define_const(rb_cShape, "SHAPE_FROZEN", INT2NUM(SHAPE_FROZEN));
rb_define_const(rb_cShape, "SHAPE_ID_NUM_BITS", INT2NUM(SHAPE_ID_NUM_BITS));
rb_define_const(rb_cShape, "SHAPE_FLAG_SHIFT", INT2NUM(SHAPE_FLAG_SHIFT));
rb_define_const(rb_cShape, "SPECIAL_CONST_SHAPE_ID", INT2NUM(SPECIAL_CONST_SHAPE_ID));
rb_define_const(rb_cShape, "OBJ_TOO_COMPLEX_SHAPE_ID", INT2NUM(OBJ_TOO_COMPLEX_SHAPE_ID));
rb_define_const(rb_cShape, "SHAPE_MAX_VARIATIONS", INT2NUM(SHAPE_MAX_VARIATIONS));
rb_define_const(rb_cShape, "SIZEOF_RB_SHAPE_T", INT2NUM(sizeof(rb_shape_t)));
rb_define_const(rb_cShape, "SIZEOF_REDBLACK_NODE_T", INT2NUM(sizeof(redblack_node_t)));
rb_define_const(rb_cShape, "SHAPE_BUFFER_SIZE", INT2NUM(sizeof(rb_shape_t) * SHAPE_BUFFER_SIZE));
rb_define_const(rb_cShape, "REDBLACK_CACHE_SIZE", INT2NUM(sizeof(redblack_node_t) * REDBLACK_CACHE_SIZE));
rb_define_singleton_method(rb_cShape, "transition_tree", shape_transition_tree, 0);
rb_define_singleton_method(rb_cShape, "find_by_id", rb_shape_find_by_id, 1);
rb_define_singleton_method(rb_cShape, "of", rb_shape_debug_shape, 1);
rb_define_singleton_method(rb_cShape, "root_shape", rb_shape_root_shape, 0);
rb_define_singleton_method(rb_cShape, "shapes_available", rb_shape_shapes_available, 0);
#endif
}