mirror of
https://github.com/ruby/ruby.git
synced 2025-08-15 13:39:04 +02:00
1218 lines
46 KiB
Rust
1218 lines
46 KiB
Rust
use std::cell::Cell;
|
|
use std::rc::Rc;
|
|
|
|
use crate::backend::current::{Reg, ALLOC_REGS};
|
|
use crate::invariants::track_bop_assumption;
|
|
use crate::gc::get_or_create_iseq_payload;
|
|
use crate::state::ZJITState;
|
|
use crate::{asm::CodeBlock, cruby::*, options::debug, virtualmem::CodePtr};
|
|
use crate::backend::lir::{self, asm_comment, Assembler, Opnd, Target, CFP, C_ARG_OPNDS, C_RET_OPND, EC, NATIVE_STACK_PTR, SP};
|
|
use crate::hir::{iseq_to_hir, Block, BlockId, BranchEdge, CallInfo, Invariant, RangeType, SpecialObjectType, SELF_PARAM_IDX};
|
|
use crate::hir::{Const, FrameState, Function, Insn, InsnId};
|
|
use crate::hir_type::{types::Fixnum, Type};
|
|
use crate::options::get_option;
|
|
|
|
/// Ephemeral code generation state
|
|
struct JITState {
|
|
/// Instruction sequence for the method being compiled
|
|
iseq: IseqPtr,
|
|
|
|
/// Low-level IR Operands indexed by High-level IR's Instruction ID
|
|
opnds: Vec<Option<Opnd>>,
|
|
|
|
/// Labels for each basic block indexed by the BlockId
|
|
labels: Vec<Option<Target>>,
|
|
|
|
/// Branches to an ISEQ that need to be compiled later
|
|
branch_iseqs: Vec<(Rc<Branch>, IseqPtr)>,
|
|
|
|
/// The number of bytes allocated for basic block arguments spilled onto the C stack
|
|
c_stack_bytes: usize,
|
|
}
|
|
|
|
impl JITState {
|
|
/// Create a new JITState instance
|
|
fn new(iseq: IseqPtr, num_insns: usize, num_blocks: usize, c_stack_bytes: usize) -> Self {
|
|
JITState {
|
|
iseq,
|
|
opnds: vec![None; num_insns],
|
|
labels: vec![None; num_blocks],
|
|
branch_iseqs: Vec::default(),
|
|
c_stack_bytes,
|
|
}
|
|
}
|
|
|
|
/// Retrieve the output of a given instruction that has been compiled
|
|
fn get_opnd(&self, insn_id: InsnId) -> Option<lir::Opnd> {
|
|
let opnd = self.opnds[insn_id.0];
|
|
if opnd.is_none() {
|
|
debug!("Failed to get_opnd({insn_id})");
|
|
}
|
|
opnd
|
|
}
|
|
|
|
/// Find or create a label for a given BlockId
|
|
fn get_label(&mut self, asm: &mut Assembler, block_id: BlockId) -> Target {
|
|
match &self.labels[block_id.0] {
|
|
Some(label) => label.clone(),
|
|
None => {
|
|
let label = asm.new_label(&format!("{block_id}"));
|
|
self.labels[block_id.0] = Some(label.clone());
|
|
label
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CRuby API to compile a given ISEQ
|
|
#[unsafe(no_mangle)]
|
|
pub extern "C" fn rb_zjit_iseq_gen_entry_point(iseq: IseqPtr, _ec: EcPtr) -> *const u8 {
|
|
// Do not test the JIT code in HIR tests
|
|
if cfg!(test) {
|
|
return std::ptr::null();
|
|
}
|
|
|
|
// Reject ISEQs with very large temp stacks.
|
|
// We cannot encode too large offsets to access locals in arm64.
|
|
let stack_max = unsafe { rb_get_iseq_body_stack_max(iseq) };
|
|
if stack_max >= i8::MAX as u32 {
|
|
debug!("ISEQ stack too large: {stack_max}");
|
|
return std::ptr::null();
|
|
}
|
|
|
|
// Take a lock to avoid writing to ISEQ in parallel with Ractors.
|
|
// with_vm_lock() does nothing if the program doesn't use Ractors.
|
|
let code_ptr = with_vm_lock(src_loc!(), || {
|
|
gen_iseq_entry_point(iseq)
|
|
});
|
|
|
|
// Assert that the ISEQ compiles if RubyVM::ZJIT.assert_compiles is enabled
|
|
if ZJITState::assert_compiles_enabled() && code_ptr.is_null() {
|
|
let iseq_location = iseq_get_location(iseq, 0);
|
|
panic!("Failed to compile: {iseq_location}");
|
|
}
|
|
|
|
code_ptr
|
|
}
|
|
|
|
/// Compile an entry point for a given ISEQ
|
|
fn gen_iseq_entry_point(iseq: IseqPtr) -> *const u8 {
|
|
// Compile ISEQ into High-level IR
|
|
let function = match compile_iseq(iseq) {
|
|
Some(function) => function,
|
|
None => return std::ptr::null(),
|
|
};
|
|
|
|
// Compile the High-level IR
|
|
let cb = ZJITState::get_code_block();
|
|
let (start_ptr, mut branch_iseqs) = match gen_function(cb, iseq, &function) {
|
|
Some((start_ptr, branch_iseqs)) => {
|
|
// Remember the block address to reuse it later
|
|
let payload = get_or_create_iseq_payload(iseq);
|
|
payload.start_ptr = Some(start_ptr);
|
|
|
|
// Compile an entry point to the JIT code
|
|
(gen_entry(cb, iseq, &function, start_ptr), branch_iseqs)
|
|
},
|
|
None => (None, vec![]),
|
|
};
|
|
|
|
// Recursively compile callee ISEQs
|
|
while let Some((branch, iseq)) = branch_iseqs.pop() {
|
|
// Disable profiling. This will be the last use of the profiling information for the ISEQ.
|
|
unsafe { rb_zjit_profile_disable(iseq); }
|
|
|
|
// Compile the ISEQ
|
|
if let Some((callee_ptr, callee_branch_iseqs)) = gen_iseq(cb, iseq) {
|
|
let callee_addr = callee_ptr.raw_ptr(cb);
|
|
branch.regenerate(cb, |asm| {
|
|
asm.ccall(callee_addr, vec![]);
|
|
});
|
|
branch_iseqs.extend(callee_branch_iseqs);
|
|
} else {
|
|
// Failed to compile the callee. Bail out of compiling this graph of ISEQs.
|
|
return std::ptr::null();
|
|
}
|
|
}
|
|
|
|
// Always mark the code region executable if asm.compile() has been used
|
|
cb.mark_all_executable();
|
|
|
|
// Return a JIT code address or a null pointer
|
|
start_ptr.map(|start_ptr| start_ptr.raw_ptr(cb)).unwrap_or(std::ptr::null())
|
|
}
|
|
|
|
/// Compile a JIT entry
|
|
fn gen_entry(cb: &mut CodeBlock, iseq: IseqPtr, function: &Function, function_ptr: CodePtr) -> Option<CodePtr> {
|
|
// Set up registers for CFP, EC, SP, and basic block arguments
|
|
let mut asm = Assembler::new();
|
|
gen_entry_prologue(&mut asm, iseq);
|
|
gen_entry_params(&mut asm, iseq, function.block(BlockId(0)));
|
|
|
|
// Jump to the first block using a call instruction
|
|
asm.ccall(function_ptr.raw_ptr(cb) as *const u8, vec![]);
|
|
|
|
// Restore registers for CFP, EC, and SP after use
|
|
asm_comment!(asm, "exit to the interpreter");
|
|
// On x86_64, maintain 16-byte stack alignment
|
|
if cfg!(target_arch = "x86_64") {
|
|
asm.cpop_into(SP);
|
|
}
|
|
asm.cpop_into(SP);
|
|
asm.cpop_into(EC);
|
|
asm.cpop_into(CFP);
|
|
asm.frame_teardown();
|
|
asm.cret(C_RET_OPND);
|
|
|
|
asm.compile(cb).map(|(start_ptr, _)| start_ptr)
|
|
}
|
|
|
|
/// Compile an ISEQ into machine code
|
|
fn gen_iseq(cb: &mut CodeBlock, iseq: IseqPtr) -> Option<(CodePtr, Vec<(Rc<Branch>, IseqPtr)>)> {
|
|
// Return an existing pointer if it's already compiled
|
|
let payload = get_or_create_iseq_payload(iseq);
|
|
if let Some(start_ptr) = payload.start_ptr {
|
|
return Some((start_ptr, vec![]));
|
|
}
|
|
|
|
// Convert ISEQ into High-level IR and optimize HIR
|
|
let function = match compile_iseq(iseq) {
|
|
Some(function) => function,
|
|
None => return None,
|
|
};
|
|
|
|
// Compile the High-level IR
|
|
let result = gen_function(cb, iseq, &function);
|
|
if let Some((start_ptr, _)) = result {
|
|
payload.start_ptr = Some(start_ptr);
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Compile a function
|
|
fn gen_function(cb: &mut CodeBlock, iseq: IseqPtr, function: &Function) -> Option<(CodePtr, Vec<(Rc<Branch>, IseqPtr)>)> {
|
|
let c_stack_bytes = aligned_stack_bytes(max_num_params(function).saturating_sub(ALLOC_REGS.len()));
|
|
let mut jit = JITState::new(iseq, function.num_insns(), function.num_blocks(), c_stack_bytes);
|
|
let mut asm = Assembler::new();
|
|
|
|
// Compile each basic block
|
|
let reverse_post_order = function.rpo();
|
|
for &block_id in reverse_post_order.iter() {
|
|
let block = function.block(block_id);
|
|
asm_comment!(asm, "Block: {block_id}({})", block.params().map(|param| format!("{param}")).collect::<Vec<_>>().join(", "));
|
|
|
|
// Write a label to jump to the basic block
|
|
let label = jit.get_label(&mut asm, block_id);
|
|
asm.write_label(label);
|
|
|
|
// Set up the frame at the first block
|
|
if block_id == BlockId(0) {
|
|
asm.frame_setup();
|
|
|
|
// Bump the C stack pointer for basic block arguments
|
|
if jit.c_stack_bytes > 0 {
|
|
asm_comment!(asm, "bump C stack pointer");
|
|
let new_sp = asm.sub(NATIVE_STACK_PTR, jit.c_stack_bytes.into());
|
|
asm.mov(NATIVE_STACK_PTR, new_sp);
|
|
}
|
|
}
|
|
|
|
// Compile all parameters
|
|
for &insn_id in block.params() {
|
|
match function.find(insn_id) {
|
|
Insn::Param { idx } => {
|
|
jit.opnds[insn_id.0] = Some(gen_param(&mut asm, idx));
|
|
},
|
|
insn => unreachable!("Non-param insn found in block.params: {insn:?}"),
|
|
}
|
|
}
|
|
|
|
// Compile all instructions
|
|
for &insn_id in block.insns() {
|
|
let insn = function.find(insn_id);
|
|
if gen_insn(cb, &mut jit, &mut asm, function, insn_id, &insn).is_none() {
|
|
debug!("Failed to compile insn: {insn_id} {insn}");
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
if get_option!(dump_lir) {
|
|
println!("LIR:\nfn {}:\n{:?}", iseq_name(iseq), asm);
|
|
}
|
|
|
|
// Generate code if everything can be compiled
|
|
asm.compile(cb).map(|(start_ptr, _)| (start_ptr, jit.branch_iseqs))
|
|
}
|
|
|
|
/// Compile an instruction
|
|
fn gen_insn(cb: &mut CodeBlock, jit: &mut JITState, asm: &mut Assembler, function: &Function, insn_id: InsnId, insn: &Insn) -> Option<()> {
|
|
// Convert InsnId to lir::Opnd
|
|
macro_rules! opnd {
|
|
($insn_id:ident) => {
|
|
jit.get_opnd(*$insn_id)?
|
|
};
|
|
}
|
|
|
|
macro_rules! opnds {
|
|
($insn_ids:ident) => {
|
|
{
|
|
Option::from_iter($insn_ids.iter().map(|insn_id| jit.get_opnd(*insn_id)))?
|
|
}
|
|
};
|
|
}
|
|
|
|
if !matches!(*insn, Insn::Snapshot { .. }) {
|
|
asm_comment!(asm, "Insn: {insn_id} {insn}");
|
|
}
|
|
|
|
let out_opnd = match insn {
|
|
Insn::Const { val: Const::Value(val) } => gen_const(*val),
|
|
Insn::NewArray { elements, state } => gen_new_array(asm, opnds!(elements), &function.frame_state(*state)),
|
|
Insn::NewRange { low, high, flag, state } => gen_new_range(asm, opnd!(low), opnd!(high), *flag, &function.frame_state(*state)),
|
|
Insn::ArrayDup { val, state } => gen_array_dup(asm, opnd!(val), &function.frame_state(*state)),
|
|
Insn::StringCopy { val, chilled } => gen_string_copy(asm, opnd!(val), *chilled),
|
|
Insn::Param { idx } => unreachable!("block.insns should not have Insn::Param({idx})"),
|
|
Insn::Snapshot { .. } => return Some(()), // we don't need to do anything for this instruction at the moment
|
|
Insn::Jump(branch) => return gen_jump(jit, asm, branch),
|
|
Insn::IfTrue { val, target } => return gen_if_true(jit, asm, opnd!(val), target),
|
|
Insn::IfFalse { val, target } => return gen_if_false(jit, asm, opnd!(val), target),
|
|
Insn::SendWithoutBlock { call_info, cd, state, self_val, args, .. } => gen_send_without_block(jit, asm, call_info, *cd, &function.frame_state(*state), opnd!(self_val), opnds!(args))?,
|
|
Insn::SendWithoutBlockDirect { cme, iseq, self_val, args, state, .. } => gen_send_without_block_direct(cb, jit, asm, *cme, *iseq, opnd!(self_val), opnds!(args), &function.frame_state(*state))?,
|
|
Insn::InvokeBuiltin { bf, args, state } => gen_invokebuiltin(asm, &function.frame_state(*state), bf, opnds!(args))?,
|
|
Insn::Return { val } => return Some(gen_return(jit, asm, opnd!(val))?),
|
|
Insn::FixnumAdd { left, right, state } => gen_fixnum_add(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state))?,
|
|
Insn::FixnumSub { left, right, state } => gen_fixnum_sub(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state))?,
|
|
Insn::FixnumMult { left, right, state } => gen_fixnum_mult(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state))?,
|
|
Insn::FixnumEq { left, right } => gen_fixnum_eq(asm, opnd!(left), opnd!(right))?,
|
|
Insn::FixnumNeq { left, right } => gen_fixnum_neq(asm, opnd!(left), opnd!(right))?,
|
|
Insn::FixnumLt { left, right } => gen_fixnum_lt(asm, opnd!(left), opnd!(right))?,
|
|
Insn::FixnumLe { left, right } => gen_fixnum_le(asm, opnd!(left), opnd!(right))?,
|
|
Insn::FixnumGt { left, right } => gen_fixnum_gt(asm, opnd!(left), opnd!(right))?,
|
|
Insn::FixnumGe { left, right } => gen_fixnum_ge(asm, opnd!(left), opnd!(right))?,
|
|
Insn::FixnumAnd { left, right } => gen_fixnum_and(asm, opnd!(left), opnd!(right))?,
|
|
Insn::FixnumOr { left, right } => gen_fixnum_or(asm, opnd!(left), opnd!(right))?,
|
|
Insn::IsNil { val } => gen_isnil(asm, opnd!(val))?,
|
|
Insn::Test { val } => gen_test(asm, opnd!(val))?,
|
|
Insn::GuardType { val, guard_type, state } => gen_guard_type(jit, asm, opnd!(val), *guard_type, &function.frame_state(*state))?,
|
|
Insn::GuardBitEquals { val, expected, state } => gen_guard_bit_equals(jit, asm, opnd!(val), *expected, &function.frame_state(*state))?,
|
|
Insn::PatchPoint(invariant) => return gen_patch_point(asm, invariant),
|
|
Insn::CCall { cfun, args, name: _, return_type: _, elidable: _ } => gen_ccall(asm, *cfun, opnds!(args))?,
|
|
Insn::GetIvar { self_val, id, state: _ } => gen_getivar(asm, opnd!(self_val), *id),
|
|
Insn::SetGlobal { id, val, state: _ } => return Some(gen_setglobal(asm, *id, opnd!(val))),
|
|
Insn::GetGlobal { id, state: _ } => gen_getglobal(asm, *id),
|
|
&Insn::GetLocal { ep_offset, level } => gen_getlocal_with_ep(asm, ep_offset, level)?,
|
|
Insn::SetLocal { val, ep_offset, level } => return gen_setlocal_with_ep(asm, opnd!(val), *ep_offset, *level),
|
|
Insn::GetConstantPath { ic, state } => gen_get_constant_path(asm, *ic, &function.frame_state(*state)),
|
|
Insn::SetIvar { self_val, id, val, state: _ } => return gen_setivar(asm, opnd!(self_val), *id, opnd!(val)),
|
|
Insn::SideExit { state, reason: _ } => return gen_side_exit(jit, asm, &function.frame_state(*state)),
|
|
Insn::PutSpecialObject { value_type } => gen_putspecialobject(asm, *value_type),
|
|
Insn::AnyToString { val, str, state } => gen_anytostring(asm, opnd!(val), opnd!(str), &function.frame_state(*state))?,
|
|
Insn::Defined { op_type, obj, pushval, v } => gen_defined(jit, asm, *op_type, *obj, *pushval, opnd!(v))?,
|
|
_ => {
|
|
debug!("ZJIT: gen_function: unexpected insn {insn}");
|
|
return None;
|
|
}
|
|
};
|
|
|
|
assert!(insn.has_output(), "Cannot write LIR output of HIR instruction with no output: {insn}");
|
|
|
|
// If the instruction has an output, remember it in jit.opnds
|
|
jit.opnds[insn_id.0] = Some(out_opnd);
|
|
|
|
Some(())
|
|
}
|
|
|
|
/// Gets the EP of the ISeq of the containing method, or "local level".
|
|
/// Equivalent of GET_LEP() macro.
|
|
fn gen_get_lep(jit: &JITState, asm: &mut Assembler) -> Opnd {
|
|
// Equivalent of get_lvar_level() in compile.c
|
|
fn get_lvar_level(mut iseq: IseqPtr) -> u32 {
|
|
let local_iseq = unsafe { rb_get_iseq_body_local_iseq(iseq) };
|
|
let mut level = 0;
|
|
while iseq != local_iseq {
|
|
iseq = unsafe { rb_get_iseq_body_parent_iseq(iseq) };
|
|
level += 1;
|
|
}
|
|
|
|
level
|
|
}
|
|
|
|
let level = get_lvar_level(jit.iseq);
|
|
gen_get_ep(asm, level)
|
|
}
|
|
|
|
// Get EP at `level` from CFP
|
|
fn gen_get_ep(asm: &mut Assembler, level: u32) -> Opnd {
|
|
// Load environment pointer EP from CFP into a register
|
|
let ep_opnd = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_EP);
|
|
let mut ep_opnd = asm.load(ep_opnd);
|
|
|
|
for _ in 0..level {
|
|
// Get the previous EP from the current EP
|
|
// See GET_PREV_EP(ep) macro
|
|
// VALUE *prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
|
|
const UNTAGGING_MASK: Opnd = Opnd::Imm(!0x03);
|
|
let offset = SIZEOF_VALUE_I32 * VM_ENV_DATA_INDEX_SPECVAL;
|
|
ep_opnd = asm.load(Opnd::mem(64, ep_opnd, offset));
|
|
ep_opnd = asm.and(ep_opnd, UNTAGGING_MASK);
|
|
}
|
|
|
|
ep_opnd
|
|
}
|
|
|
|
fn gen_defined(jit: &JITState, asm: &mut Assembler, op_type: usize, _obj: VALUE, pushval: VALUE, _tested_value: Opnd) -> Option<Opnd> {
|
|
match op_type as defined_type {
|
|
DEFINED_YIELD => {
|
|
// `yield` goes to the block handler stowed in the "local" iseq which is
|
|
// the current iseq or a parent. Only the "method" iseq type can be passed a
|
|
// block handler. (e.g. `yield` in the top level script is a syntax error.)
|
|
let local_iseq = unsafe { rb_get_iseq_body_local_iseq(jit.iseq) };
|
|
if unsafe { rb_get_iseq_body_type(local_iseq) } == ISEQ_TYPE_METHOD {
|
|
let lep = gen_get_lep(jit, asm);
|
|
let block_handler = asm.load(Opnd::mem(64, lep, SIZEOF_VALUE_I32 * VM_ENV_DATA_INDEX_SPECVAL));
|
|
let pushval = asm.load(pushval.into());
|
|
asm.cmp(block_handler, VM_BLOCK_HANDLER_NONE.into());
|
|
Some(asm.csel_e(Qnil.into(), pushval.into()))
|
|
} else {
|
|
Some(Qnil.into())
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
/// Get a local variable from a higher scope or the heap. `local_ep_offset` is in number of VALUEs.
|
|
/// We generate this instruction with level=0 only when the local variable is on the heap, so we
|
|
/// can't optimize the level=0 case using the SP register.
|
|
fn gen_getlocal_with_ep(asm: &mut Assembler, local_ep_offset: u32, level: u32) -> Option<lir::Opnd> {
|
|
let ep = gen_get_ep(asm, level);
|
|
let offset = -(SIZEOF_VALUE_I32 * i32::try_from(local_ep_offset).ok()?);
|
|
Some(asm.load(Opnd::mem(64, ep, offset)))
|
|
}
|
|
|
|
/// Set a local variable from a higher scope or the heap. `local_ep_offset` is in number of VALUEs.
|
|
/// We generate this instruction with level=0 only when the local variable is on the heap, so we
|
|
/// can't optimize the level=0 case using the SP register.
|
|
fn gen_setlocal_with_ep(asm: &mut Assembler, val: Opnd, local_ep_offset: u32, level: u32) -> Option<()> {
|
|
let ep = gen_get_ep(asm, level);
|
|
let offset = -(SIZEOF_VALUE_I32 * i32::try_from(local_ep_offset).ok()?);
|
|
asm.mov(Opnd::mem(64, ep, offset), val);
|
|
Some(())
|
|
}
|
|
|
|
fn gen_get_constant_path(asm: &mut Assembler, ic: *const iseq_inline_constant_cache, state: &FrameState) -> Opnd {
|
|
unsafe extern "C" {
|
|
fn rb_vm_opt_getconstant_path(ec: EcPtr, cfp: CfpPtr, ic: *const iseq_inline_constant_cache) -> VALUE;
|
|
}
|
|
|
|
// Save PC since the call can allocate an IC
|
|
gen_save_pc(asm, state);
|
|
|
|
let val = asm.ccall(
|
|
rb_vm_opt_getconstant_path as *const u8,
|
|
vec![EC, CFP, Opnd::const_ptr(ic as *const u8)],
|
|
);
|
|
val
|
|
}
|
|
|
|
fn gen_invokebuiltin(asm: &mut Assembler, state: &FrameState, bf: &rb_builtin_function, args: Vec<Opnd>) -> Option<lir::Opnd> {
|
|
// Ensure we have enough room fit ec, self, and arguments
|
|
// TODO remove this check when we have stack args (we can use Time.new to test it)
|
|
if bf.argc + 2 > (C_ARG_OPNDS.len() as i32) {
|
|
return None;
|
|
}
|
|
|
|
gen_save_pc(asm, state);
|
|
|
|
let mut cargs = vec![EC];
|
|
cargs.extend(args);
|
|
|
|
let val = asm.ccall(bf.func_ptr as *const u8, cargs);
|
|
|
|
Some(val)
|
|
}
|
|
|
|
/// Record a patch point that should be invalidated on a given invariant
|
|
fn gen_patch_point(asm: &mut Assembler, invariant: &Invariant) -> Option<()> {
|
|
let invariant = invariant.clone();
|
|
asm.pos_marker(move |code_ptr, _cb| {
|
|
match invariant {
|
|
Invariant::BOPRedefined { klass, bop } => {
|
|
track_bop_assumption(klass, bop, code_ptr);
|
|
}
|
|
_ => {
|
|
debug!("ZJIT: gen_patch_point: unimplemented invariant {invariant:?}");
|
|
return;
|
|
}
|
|
}
|
|
});
|
|
// TODO: Make sure patch points do not overlap with each other.
|
|
Some(())
|
|
}
|
|
|
|
/// Lowering for [`Insn::CCall`]. This is a low-level raw call that doesn't know
|
|
/// anything about the callee, so handling for e.g. GC safety is dealt with elsewhere.
|
|
fn gen_ccall(asm: &mut Assembler, cfun: *const u8, args: Vec<Opnd>) -> Option<lir::Opnd> {
|
|
Some(asm.ccall(cfun, args))
|
|
}
|
|
|
|
/// Emit an uncached instance variable lookup
|
|
fn gen_getivar(asm: &mut Assembler, recv: Opnd, id: ID) -> Opnd {
|
|
asm_comment!(asm, "call rb_ivar_get");
|
|
asm.ccall(
|
|
rb_ivar_get as *const u8,
|
|
vec![recv, Opnd::UImm(id.0)],
|
|
)
|
|
}
|
|
|
|
/// Emit an uncached instance variable store
|
|
fn gen_setivar(asm: &mut Assembler, recv: Opnd, id: ID, val: Opnd) -> Option<()> {
|
|
asm_comment!(asm, "call rb_ivar_set");
|
|
asm.ccall(
|
|
rb_ivar_set as *const u8,
|
|
vec![recv, Opnd::UImm(id.0), val],
|
|
);
|
|
Some(())
|
|
}
|
|
|
|
/// Look up global variables
|
|
fn gen_getglobal(asm: &mut Assembler, id: ID) -> Opnd {
|
|
asm_comment!(asm, "call rb_gvar_get");
|
|
asm.ccall(
|
|
rb_gvar_get as *const u8,
|
|
vec![Opnd::UImm(id.0)],
|
|
)
|
|
}
|
|
|
|
/// Set global variables
|
|
fn gen_setglobal(asm: &mut Assembler, id: ID, val: Opnd) {
|
|
asm_comment!(asm, "call rb_gvar_set");
|
|
asm.ccall(rb_gvar_set as *const u8, vec![Opnd::UImm(id.0), val]);
|
|
}
|
|
|
|
/// Side-exit into the interpreter
|
|
fn gen_side_exit(jit: &mut JITState, asm: &mut Assembler, state: &FrameState) -> Option<()> {
|
|
asm.jmp(side_exit(jit, state)?);
|
|
Some(())
|
|
}
|
|
|
|
/// Emit a special object lookup
|
|
fn gen_putspecialobject(asm: &mut Assembler, value_type: SpecialObjectType) -> Opnd {
|
|
// Get the EP of the current CFP and load it into a register
|
|
let ep_opnd = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_EP);
|
|
let ep_reg = asm.load(ep_opnd);
|
|
|
|
asm_comment!(asm, "call rb_vm_get_special_object");
|
|
asm.ccall(
|
|
rb_vm_get_special_object as *const u8,
|
|
vec![ep_reg, Opnd::UImm(u64::from(value_type))],
|
|
)
|
|
}
|
|
|
|
/// Compile an interpreter entry block to be inserted into an ISEQ
|
|
fn gen_entry_prologue(asm: &mut Assembler, iseq: IseqPtr) {
|
|
asm_comment!(asm, "ZJIT entry point: {}", iseq_get_location(iseq, 0));
|
|
asm.frame_setup();
|
|
|
|
// Save the registers we'll use for CFP, EP, SP
|
|
asm.cpush(CFP);
|
|
asm.cpush(EC);
|
|
asm.cpush(SP);
|
|
// On x86_64, maintain 16-byte stack alignment
|
|
if cfg!(target_arch = "x86_64") {
|
|
asm.cpush(SP);
|
|
}
|
|
|
|
// EC and CFP are passed as arguments
|
|
asm.mov(EC, C_ARG_OPNDS[0]);
|
|
asm.mov(CFP, C_ARG_OPNDS[1]);
|
|
|
|
// Load the current SP from the CFP into REG_SP
|
|
asm.mov(SP, Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SP));
|
|
|
|
// TODO: Support entry chain guard when ISEQ has_opt
|
|
}
|
|
|
|
/// Assign method arguments to basic block arguments at JIT entry
|
|
fn gen_entry_params(asm: &mut Assembler, iseq: IseqPtr, entry_block: &Block) {
|
|
let self_param = gen_param(asm, SELF_PARAM_IDX);
|
|
asm.mov(self_param, Opnd::mem(VALUE_BITS, CFP, RUBY_OFFSET_CFP_SELF));
|
|
|
|
let num_params = entry_block.params().len() - 1; // -1 to exclude self
|
|
if num_params > 0 {
|
|
asm_comment!(asm, "set method params: {num_params}");
|
|
|
|
// Allocate registers for basic block arguments
|
|
let params: Vec<Opnd> = (0..num_params).map(|idx|
|
|
gen_param(asm, idx + 1) // +1 for self
|
|
).collect();
|
|
|
|
// Assign local variables to the basic block arguments
|
|
for (idx, ¶m) in params.iter().enumerate() {
|
|
let local = gen_entry_param(asm, iseq, idx);
|
|
asm.load_into(param, local);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Set branch params to basic block arguments
|
|
fn gen_branch_params(jit: &mut JITState, asm: &mut Assembler, branch: &BranchEdge) -> Option<()> {
|
|
if !branch.args.is_empty() {
|
|
asm_comment!(asm, "set branch params: {}", branch.args.len());
|
|
let mut moves: Vec<(Reg, Opnd)> = vec![];
|
|
for (idx, &arg) in branch.args.iter().enumerate() {
|
|
match param_opnd(idx) {
|
|
Opnd::Reg(reg) => {
|
|
// If a parameter is a register, we need to parallel-move it
|
|
moves.push((reg, jit.get_opnd(arg)?));
|
|
},
|
|
param => {
|
|
// If a parameter is memory, we set it beforehand
|
|
asm.mov(param, jit.get_opnd(arg)?);
|
|
}
|
|
}
|
|
}
|
|
asm.parallel_mov(moves);
|
|
}
|
|
Some(())
|
|
}
|
|
|
|
/// Get a method parameter on JIT entry. As of entry, whether EP is escaped or not solely
|
|
/// depends on the ISEQ type.
|
|
fn gen_entry_param(asm: &mut Assembler, iseq: IseqPtr, local_idx: usize) -> lir::Opnd {
|
|
let ep_offset = local_idx_to_ep_offset(iseq, local_idx);
|
|
|
|
// If the ISEQ does not escape EP, we can optimize the local variable access using the SP register.
|
|
if !iseq_entry_escapes_ep(iseq) {
|
|
// Create a reference to the local variable using the SP register. We assume EP == BP.
|
|
// TODO: Implement the invalidation in rb_zjit_invalidate_ep_is_bp()
|
|
let offs = -(SIZEOF_VALUE_I32 * (ep_offset + 1));
|
|
Opnd::mem(64, SP, offs)
|
|
} else {
|
|
// Get the EP of the current CFP
|
|
let ep_opnd = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_EP);
|
|
let ep_reg = asm.load(ep_opnd);
|
|
|
|
// Create a reference to the local variable using cfp->ep
|
|
let offs = -(SIZEOF_VALUE_I32 * ep_offset);
|
|
Opnd::mem(64, ep_reg, offs)
|
|
}
|
|
}
|
|
|
|
/// Compile a constant
|
|
fn gen_const(val: VALUE) -> lir::Opnd {
|
|
// Just propagate the constant value and generate nothing
|
|
Opnd::Value(val)
|
|
}
|
|
|
|
/// Compile a basic block argument
|
|
fn gen_param(asm: &mut Assembler, idx: usize) -> lir::Opnd {
|
|
// Allocate a register or a stack slot
|
|
match param_opnd(idx) {
|
|
// If it's a register, insert LiveReg instruction to reserve the register
|
|
// in the register pool for register allocation.
|
|
param @ Opnd::Reg(_) => asm.live_reg_opnd(param),
|
|
param => param,
|
|
}
|
|
}
|
|
|
|
/// Compile a jump to a basic block
|
|
fn gen_jump(jit: &mut JITState, asm: &mut Assembler, branch: &BranchEdge) -> Option<()> {
|
|
// Set basic block arguments
|
|
gen_branch_params(jit, asm, branch);
|
|
|
|
// Jump to the basic block
|
|
let target = jit.get_label(asm, branch.target);
|
|
asm.jmp(target);
|
|
Some(())
|
|
}
|
|
|
|
/// Compile a conditional branch to a basic block
|
|
fn gen_if_true(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, branch: &BranchEdge) -> Option<()> {
|
|
// If val is zero, move on to the next instruction.
|
|
let if_false = asm.new_label("if_false");
|
|
asm.test(val, val);
|
|
asm.jz(if_false.clone());
|
|
|
|
// If val is not zero, set basic block arguments and jump to the branch target.
|
|
// TODO: Consider generating the loads out-of-line
|
|
let if_true = jit.get_label(asm, branch.target);
|
|
gen_branch_params(jit, asm, branch);
|
|
asm.jmp(if_true);
|
|
|
|
asm.write_label(if_false);
|
|
|
|
Some(())
|
|
}
|
|
|
|
/// Compile a conditional branch to a basic block
|
|
fn gen_if_false(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, branch: &BranchEdge) -> Option<()> {
|
|
// If val is not zero, move on to the next instruction.
|
|
let if_true = asm.new_label("if_true");
|
|
asm.test(val, val);
|
|
asm.jnz(if_true.clone());
|
|
|
|
// If val is zero, set basic block arguments and jump to the branch target.
|
|
// TODO: Consider generating the loads out-of-line
|
|
let if_false = jit.get_label(asm, branch.target);
|
|
gen_branch_params(jit, asm, branch);
|
|
asm.jmp(if_false);
|
|
|
|
asm.write_label(if_true);
|
|
|
|
Some(())
|
|
}
|
|
|
|
/// Compile a dynamic dispatch without block
|
|
fn gen_send_without_block(
|
|
jit: &mut JITState,
|
|
asm: &mut Assembler,
|
|
call_info: &CallInfo,
|
|
cd: *const rb_call_data,
|
|
state: &FrameState,
|
|
self_val: Opnd,
|
|
args: Vec<Opnd>,
|
|
) -> Option<lir::Opnd> {
|
|
// Spill locals onto the stack.
|
|
// TODO: Don't spill locals eagerly; lazily reify frames
|
|
asm_comment!(asm, "spill locals");
|
|
for (idx, &insn_id) in state.locals().enumerate() {
|
|
asm.mov(Opnd::mem(64, SP, (-local_idx_to_ep_offset(jit.iseq, idx) - 1) * SIZEOF_VALUE_I32), jit.get_opnd(insn_id)?);
|
|
}
|
|
// Spill the receiver and the arguments onto the stack.
|
|
// They need to be on the interpreter stack to let the interpreter access them.
|
|
// TODO: Avoid spilling operands that have been spilled before.
|
|
asm_comment!(asm, "spill receiver and arguments");
|
|
for (idx, &val) in [self_val].iter().chain(args.iter()).enumerate() {
|
|
// Currently, we don't move the SP register. So it's equal to the base pointer.
|
|
let stack_opnd = Opnd::mem(64, SP, idx as i32 * SIZEOF_VALUE_I32);
|
|
asm.mov(stack_opnd, val);
|
|
}
|
|
|
|
// Save PC and SP
|
|
gen_save_pc(asm, state);
|
|
gen_save_sp(asm, 1 + args.len()); // +1 for receiver
|
|
|
|
asm_comment!(asm, "call #{} with dynamic dispatch", call_info.method_name);
|
|
unsafe extern "C" {
|
|
fn rb_vm_opt_send_without_block(ec: EcPtr, cfp: CfpPtr, cd: VALUE) -> VALUE;
|
|
}
|
|
let ret = asm.ccall(
|
|
rb_vm_opt_send_without_block as *const u8,
|
|
vec![EC, CFP, (cd as usize).into()],
|
|
);
|
|
// TODO(max): Add a PatchPoint here that can side-exit the function if the callee messed with
|
|
// the frame's locals
|
|
|
|
Some(ret)
|
|
}
|
|
|
|
/// Compile a direct jump to an ISEQ call without block
|
|
fn gen_send_without_block_direct(
|
|
cb: &mut CodeBlock,
|
|
jit: &mut JITState,
|
|
asm: &mut Assembler,
|
|
cme: *const rb_callable_method_entry_t,
|
|
iseq: IseqPtr,
|
|
recv: Opnd,
|
|
args: Vec<Opnd>,
|
|
state: &FrameState,
|
|
) -> Option<lir::Opnd> {
|
|
// Save cfp->pc and cfp->sp for the caller frame
|
|
gen_save_pc(asm, state);
|
|
gen_save_sp(asm, state.stack().len() - args.len() - 1); // -1 for receiver
|
|
|
|
// Spill the virtual stack and the locals of the caller onto the stack
|
|
// TODO: Lazily materialize caller frames on side exits or when needed
|
|
asm_comment!(asm, "spill locals and stack");
|
|
for (idx, &insn_id) in state.locals().enumerate() {
|
|
asm.mov(Opnd::mem(64, SP, (-local_idx_to_ep_offset(jit.iseq, idx) - 1) * SIZEOF_VALUE_I32), jit.get_opnd(insn_id)?);
|
|
}
|
|
for (idx, &insn_id) in state.stack().enumerate() {
|
|
asm.mov(Opnd::mem(64, SP, idx as i32 * SIZEOF_VALUE_I32), jit.get_opnd(insn_id)?);
|
|
}
|
|
|
|
// Set up the new frame
|
|
// TODO: Lazily materialize caller frames on side exits or when needed
|
|
gen_push_frame(asm, args.len(), state, ControlFrame {
|
|
recv,
|
|
iseq,
|
|
cme,
|
|
frame_type: VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL,
|
|
});
|
|
|
|
asm_comment!(asm, "switch to new SP register");
|
|
let local_size = unsafe { get_iseq_body_local_table_size(iseq) } as usize;
|
|
let new_sp = asm.add(SP, ((state.stack().len() + local_size - args.len() + VM_ENV_DATA_SIZE as usize) * SIZEOF_VALUE).into());
|
|
asm.mov(SP, new_sp);
|
|
|
|
asm_comment!(asm, "switch to new CFP");
|
|
let new_cfp = asm.sub(CFP, RUBY_SIZEOF_CONTROL_FRAME.into());
|
|
asm.mov(CFP, new_cfp);
|
|
asm.store(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP), CFP);
|
|
|
|
// Set up arguments
|
|
let mut c_args = vec![recv];
|
|
c_args.extend(args);
|
|
|
|
// Make a method call. The target address will be rewritten once compiled.
|
|
let branch = Branch::new();
|
|
let dummy_ptr = cb.get_write_ptr().raw_ptr(cb);
|
|
jit.branch_iseqs.push((branch.clone(), iseq));
|
|
// TODO(max): Add a PatchPoint here that can side-exit the function if the callee messed with
|
|
// the frame's locals
|
|
let ret = asm.ccall_with_branch(dummy_ptr, c_args, &branch);
|
|
|
|
// If a callee side-exits, i.e. returns Qundef, propagate the return value to the caller.
|
|
// The caller will side-exit the callee into the interpreter.
|
|
// TODO: Let side exit code pop all JIT frames to optimize away this cmp + je.
|
|
asm.cmp(ret, Qundef.into());
|
|
asm.je(ZJITState::get_exit_trampoline().into());
|
|
|
|
Some(ret)
|
|
}
|
|
|
|
/// Compile a string resurrection
|
|
fn gen_string_copy(asm: &mut Assembler, recv: Opnd, chilled: bool) -> Opnd {
|
|
asm_comment!(asm, "call rb_ec_str_resurrect");
|
|
// TODO: split rb_ec_str_resurrect into separate functions
|
|
let chilled = if chilled { Opnd::Imm(1) } else { Opnd::Imm(0) };
|
|
asm.ccall(
|
|
rb_ec_str_resurrect as *const u8,
|
|
vec![EC, recv, chilled],
|
|
)
|
|
}
|
|
|
|
/// Compile an array duplication instruction
|
|
fn gen_array_dup(
|
|
asm: &mut Assembler,
|
|
val: lir::Opnd,
|
|
state: &FrameState,
|
|
) -> lir::Opnd {
|
|
// Save PC
|
|
gen_save_pc(asm, state);
|
|
|
|
asm_comment!(asm, "call rb_ary_resurrect");
|
|
asm.ccall(
|
|
rb_ary_resurrect as *const u8,
|
|
vec![val],
|
|
)
|
|
}
|
|
|
|
/// Compile a new array instruction
|
|
fn gen_new_array(
|
|
asm: &mut Assembler,
|
|
elements: Vec<Opnd>,
|
|
state: &FrameState,
|
|
) -> lir::Opnd {
|
|
// Save PC
|
|
gen_save_pc(asm, state);
|
|
|
|
let length: ::std::os::raw::c_long = elements.len().try_into().expect("Unable to fit length of elements into c_long");
|
|
|
|
asm_comment!(asm, "call rb_ary_new");
|
|
let new_array = asm.ccall(
|
|
rb_ary_new_capa as *const u8,
|
|
vec![lir::Opnd::Imm(length)],
|
|
);
|
|
|
|
for i in 0..elements.len() {
|
|
let val = *elements.get(i as usize).expect("Element should exist at index");
|
|
asm_comment!(asm, "call rb_ary_push");
|
|
asm.ccall(
|
|
rb_ary_push as *const u8,
|
|
vec![new_array, val]
|
|
);
|
|
}
|
|
|
|
new_array
|
|
}
|
|
|
|
/// Compile a new range instruction
|
|
fn gen_new_range(
|
|
asm: &mut Assembler,
|
|
low: lir::Opnd,
|
|
high: lir::Opnd,
|
|
flag: RangeType,
|
|
state: &FrameState,
|
|
) -> lir::Opnd {
|
|
// Save PC
|
|
gen_save_pc(asm, state);
|
|
|
|
asm_comment!(asm, "call rb_range_new");
|
|
// Call rb_range_new(low, high, flag)
|
|
let new_range = asm.ccall(
|
|
rb_range_new as *const u8,
|
|
vec![low, high, lir::Opnd::Imm(flag as i64)],
|
|
);
|
|
|
|
new_range
|
|
}
|
|
|
|
/// Compile code that exits from JIT code with a return value
|
|
fn gen_return(jit: &JITState, asm: &mut Assembler, val: lir::Opnd) -> Option<()> {
|
|
// Pop the current frame (ec->cfp++)
|
|
// Note: the return PC is already in the previous CFP
|
|
asm_comment!(asm, "pop stack frame");
|
|
let incr_cfp = asm.add(CFP, RUBY_SIZEOF_CONTROL_FRAME.into());
|
|
asm.mov(CFP, incr_cfp);
|
|
asm.mov(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP), CFP);
|
|
|
|
// Restore the C stack pointer bumped for basic block arguments
|
|
if jit.c_stack_bytes > 0 {
|
|
asm_comment!(asm, "restore C stack pointer");
|
|
let new_sp = asm.add(NATIVE_STACK_PTR, jit.c_stack_bytes.into());
|
|
asm.mov(NATIVE_STACK_PTR, new_sp);
|
|
}
|
|
|
|
asm.frame_teardown();
|
|
|
|
// Return from the function
|
|
asm.cret(val);
|
|
Some(())
|
|
}
|
|
|
|
/// Compile Fixnum + Fixnum
|
|
fn gen_fixnum_add(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> Option<lir::Opnd> {
|
|
// Add left + right and test for overflow
|
|
let left_untag = asm.sub(left, Opnd::Imm(1));
|
|
let out_val = asm.add(left_untag, right);
|
|
asm.jo(side_exit(jit, state)?);
|
|
|
|
Some(out_val)
|
|
}
|
|
|
|
/// Compile Fixnum - Fixnum
|
|
fn gen_fixnum_sub(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> Option<lir::Opnd> {
|
|
// Subtract left - right and test for overflow
|
|
let val_untag = asm.sub(left, right);
|
|
asm.jo(side_exit(jit, state)?);
|
|
let out_val = asm.add(val_untag, Opnd::Imm(1));
|
|
|
|
Some(out_val)
|
|
}
|
|
|
|
/// Compile Fixnum * Fixnum
|
|
fn gen_fixnum_mult(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> Option<lir::Opnd> {
|
|
// Do some bitwise gymnastics to handle tag bits
|
|
// x * y is translated to (x >> 1) * (y - 1) + 1
|
|
let left_untag = asm.rshift(left, Opnd::UImm(1));
|
|
let right_untag = asm.sub(right, Opnd::UImm(1));
|
|
let out_val = asm.mul(left_untag, right_untag);
|
|
|
|
// Test for overflow
|
|
asm.jo_mul(side_exit(jit, state)?);
|
|
let out_val = asm.add(out_val, Opnd::UImm(1));
|
|
|
|
Some(out_val)
|
|
}
|
|
|
|
/// Compile Fixnum == Fixnum
|
|
fn gen_fixnum_eq(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> Option<lir::Opnd> {
|
|
asm.cmp(left, right);
|
|
Some(asm.csel_e(Qtrue.into(), Qfalse.into()))
|
|
}
|
|
|
|
/// Compile Fixnum != Fixnum
|
|
fn gen_fixnum_neq(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> Option<lir::Opnd> {
|
|
asm.cmp(left, right);
|
|
Some(asm.csel_ne(Qtrue.into(), Qfalse.into()))
|
|
}
|
|
|
|
/// Compile Fixnum < Fixnum
|
|
fn gen_fixnum_lt(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> Option<lir::Opnd> {
|
|
asm.cmp(left, right);
|
|
Some(asm.csel_l(Qtrue.into(), Qfalse.into()))
|
|
}
|
|
|
|
/// Compile Fixnum <= Fixnum
|
|
fn gen_fixnum_le(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> Option<lir::Opnd> {
|
|
asm.cmp(left, right);
|
|
Some(asm.csel_le(Qtrue.into(), Qfalse.into()))
|
|
}
|
|
|
|
/// Compile Fixnum > Fixnum
|
|
fn gen_fixnum_gt(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> Option<lir::Opnd> {
|
|
asm.cmp(left, right);
|
|
Some(asm.csel_g(Qtrue.into(), Qfalse.into()))
|
|
}
|
|
|
|
/// Compile Fixnum >= Fixnum
|
|
fn gen_fixnum_ge(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> Option<lir::Opnd> {
|
|
asm.cmp(left, right);
|
|
Some(asm.csel_ge(Qtrue.into(), Qfalse.into()))
|
|
}
|
|
|
|
/// Compile Fixnum & Fixnum
|
|
fn gen_fixnum_and(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> Option<lir::Opnd> {
|
|
Some(asm.and(left, right))
|
|
}
|
|
|
|
/// Compile Fixnum | Fixnum
|
|
fn gen_fixnum_or(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> Option<lir::Opnd> {
|
|
Some(asm.or(left, right))
|
|
}
|
|
|
|
// Compile val == nil
|
|
fn gen_isnil(asm: &mut Assembler, val: lir::Opnd) -> Option<lir::Opnd> {
|
|
asm.cmp(val, Qnil.into());
|
|
// TODO: Implement and use setcc
|
|
Some(asm.csel_e(Opnd::Imm(1), Opnd::Imm(0)))
|
|
}
|
|
|
|
fn gen_anytostring(asm: &mut Assembler, val: lir::Opnd, str: lir::Opnd, state: &FrameState) -> Option<lir::Opnd> {
|
|
// Save PC
|
|
gen_save_pc(asm, state);
|
|
|
|
asm_comment!(asm, "call rb_obj_as_string_result");
|
|
Some(asm.ccall(
|
|
rb_obj_as_string_result as *const u8,
|
|
vec![str, val],
|
|
))
|
|
}
|
|
|
|
/// Evaluate if a value is truthy
|
|
/// Produces a CBool type (0 or 1)
|
|
/// In Ruby, only nil and false are falsy
|
|
/// Everything else evaluates to true
|
|
fn gen_test(asm: &mut Assembler, val: lir::Opnd) -> Option<lir::Opnd> {
|
|
// Test if any bit (outside of the Qnil bit) is on
|
|
// See RB_TEST(), include/ruby/internal/special_consts.h
|
|
asm.test(val, Opnd::Imm(!Qnil.as_i64()));
|
|
Some(asm.csel_e(0.into(), 1.into()))
|
|
}
|
|
|
|
/// Compile a type check with a side exit
|
|
fn gen_guard_type(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, guard_type: Type, state: &FrameState) -> Option<lir::Opnd> {
|
|
if guard_type.is_subtype(Fixnum) {
|
|
// Check if opnd is Fixnum
|
|
asm.test(val, Opnd::UImm(RUBY_FIXNUM_FLAG as u64));
|
|
asm.jz(side_exit(jit, state)?);
|
|
} else if let Some(expected_class) = guard_type.runtime_exact_ruby_class() {
|
|
asm_comment!(asm, "guard exact class");
|
|
|
|
// Get the class of the value
|
|
let klass = asm.ccall(rb_yarv_class_of as *const u8, vec![val]);
|
|
|
|
asm.cmp(klass, Opnd::Value(expected_class));
|
|
asm.jne(side_exit(jit, state)?);
|
|
} else {
|
|
unimplemented!("unsupported type: {guard_type}");
|
|
}
|
|
Some(val)
|
|
}
|
|
|
|
/// Compile an identity check with a side exit
|
|
fn gen_guard_bit_equals(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, expected: VALUE, state: &FrameState) -> Option<lir::Opnd> {
|
|
asm.cmp(val, Opnd::UImm(expected.into()));
|
|
asm.jnz(side_exit(jit, state)?);
|
|
Some(val)
|
|
}
|
|
|
|
/// Save the incremented PC on the CFP.
|
|
/// This is necessary when callees can raise or allocate.
|
|
fn gen_save_pc(asm: &mut Assembler, state: &FrameState) {
|
|
let opcode: usize = state.get_opcode().try_into().unwrap();
|
|
let next_pc: *const VALUE = unsafe { state.pc.offset(insn_len(opcode) as isize) };
|
|
|
|
asm_comment!(asm, "save PC to CFP");
|
|
asm.mov(Opnd::mem(64, CFP, RUBY_OFFSET_CFP_PC), Opnd::const_ptr(next_pc as *const u8));
|
|
}
|
|
|
|
/// Save the current SP on the CFP
|
|
fn gen_save_sp(asm: &mut Assembler, stack_size: usize) {
|
|
// Update cfp->sp which will be read by the interpreter. We also have the SP register in JIT
|
|
// code, and ZJIT's codegen currently assumes the SP register doesn't move, e.g. gen_param().
|
|
// So we don't update the SP register here. We could update the SP register to avoid using
|
|
// an extra register for asm.lea(), but you'll need to manage the SP offset like YJIT does.
|
|
asm_comment!(asm, "save SP to CFP: {}", stack_size);
|
|
let sp_addr = asm.lea(Opnd::mem(64, SP, stack_size as i32 * SIZEOF_VALUE_I32));
|
|
let cfp_sp = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SP);
|
|
asm.mov(cfp_sp, sp_addr);
|
|
}
|
|
|
|
/// Frame metadata written by gen_push_frame()
|
|
struct ControlFrame {
|
|
recv: Opnd,
|
|
iseq: IseqPtr,
|
|
cme: *const rb_callable_method_entry_t,
|
|
frame_type: u32,
|
|
}
|
|
|
|
/// Compile an interpreter frame
|
|
fn gen_push_frame(asm: &mut Assembler, argc: usize, state: &FrameState, frame: ControlFrame) {
|
|
// Locals are written by the callee frame on side-exits or non-leaf calls
|
|
|
|
// See vm_push_frame() for details
|
|
asm_comment!(asm, "push cme, specval, frame type");
|
|
// ep[-2]: cref of cme
|
|
let local_size = unsafe { get_iseq_body_local_table_size(frame.iseq) } as i32;
|
|
let ep_offset = state.stack().len() as i32 + local_size - argc as i32 + VM_ENV_DATA_SIZE as i32 - 1;
|
|
asm.store(Opnd::mem(64, SP, (ep_offset - 2) * SIZEOF_VALUE_I32), VALUE::from(frame.cme).into());
|
|
// ep[-1]: block_handler or prev EP
|
|
// block_handler is not supported for now
|
|
asm.store(Opnd::mem(64, SP, (ep_offset - 1) * SIZEOF_VALUE_I32), VM_BLOCK_HANDLER_NONE.into());
|
|
// ep[0]: ENV_FLAGS
|
|
asm.store(Opnd::mem(64, SP, ep_offset * SIZEOF_VALUE_I32), frame.frame_type.into());
|
|
|
|
// Write to the callee CFP
|
|
fn cfp_opnd(offset: i32) -> Opnd {
|
|
Opnd::mem(64, CFP, offset - (RUBY_SIZEOF_CONTROL_FRAME as i32))
|
|
}
|
|
|
|
asm_comment!(asm, "push callee control frame");
|
|
// cfp_opnd(RUBY_OFFSET_CFP_PC): written by the callee frame on side-exits or non-leaf calls
|
|
// cfp_opnd(RUBY_OFFSET_CFP_SP): written by the callee frame on side-exits or non-leaf calls
|
|
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_ISEQ), VALUE::from(frame.iseq).into());
|
|
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_SELF), frame.recv);
|
|
let ep = asm.lea(Opnd::mem(64, SP, ep_offset * SIZEOF_VALUE_I32));
|
|
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_EP), ep);
|
|
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_BLOCK_CODE), 0.into());
|
|
}
|
|
|
|
/// Return an operand we use for the basic block argument at a given index
|
|
fn param_opnd(idx: usize) -> Opnd {
|
|
// To simplify the implementation, allocate a fixed register or a stack slot for each basic block argument for now.
|
|
// TODO: Allow allocating arbitrary registers for basic block arguments
|
|
if idx < ALLOC_REGS.len() {
|
|
Opnd::Reg(ALLOC_REGS[idx])
|
|
} else {
|
|
Opnd::mem(64, NATIVE_STACK_PTR, -((idx - ALLOC_REGS.len() + 1) as i32) * SIZEOF_VALUE_I32)
|
|
}
|
|
}
|
|
|
|
/// Inverse of ep_offset_to_local_idx(). See ep_offset_to_local_idx() for details.
|
|
fn local_idx_to_ep_offset(iseq: IseqPtr, local_idx: usize) -> i32 {
|
|
let local_size = unsafe { get_iseq_body_local_table_size(iseq) };
|
|
local_size_and_idx_to_ep_offset(local_size as usize, local_idx)
|
|
}
|
|
|
|
/// Convert the number of locals and a local index to an offset in the EP
|
|
pub fn local_size_and_idx_to_ep_offset(local_size: usize, local_idx: usize) -> i32 {
|
|
local_size as i32 - local_idx as i32 - 1 + VM_ENV_DATA_SIZE as i32
|
|
}
|
|
|
|
/// Convert ISEQ into High-level IR
|
|
fn compile_iseq(iseq: IseqPtr) -> Option<Function> {
|
|
let mut function = match iseq_to_hir(iseq) {
|
|
Ok(function) => function,
|
|
Err(err) => {
|
|
debug!("ZJIT: iseq_to_hir: {err:?}");
|
|
return None;
|
|
}
|
|
};
|
|
function.optimize();
|
|
if let Err(err) = function.validate() {
|
|
debug!("ZJIT: compile_iseq: {err:?}");
|
|
return None;
|
|
}
|
|
Some(function)
|
|
}
|
|
|
|
/// Build a Target::SideExit out of a FrameState
|
|
fn side_exit(jit: &mut JITState, state: &FrameState) -> Option<Target> {
|
|
let mut stack = Vec::new();
|
|
for &insn_id in state.stack() {
|
|
stack.push(jit.get_opnd(insn_id)?);
|
|
}
|
|
|
|
let mut locals = Vec::new();
|
|
for &insn_id in state.locals() {
|
|
locals.push(jit.get_opnd(insn_id)?);
|
|
}
|
|
|
|
let target = Target::SideExit {
|
|
pc: state.pc,
|
|
stack,
|
|
locals,
|
|
c_stack_bytes: jit.c_stack_bytes,
|
|
};
|
|
Some(target)
|
|
}
|
|
|
|
/// Return true if a given ISEQ is known to escape EP to the heap on entry.
|
|
///
|
|
/// As of vm_push_frame(), EP is always equal to BP. However, after pushing
|
|
/// a frame, some ISEQ setups call vm_bind_update_env(), which redirects EP.
|
|
fn iseq_entry_escapes_ep(iseq: IseqPtr) -> bool {
|
|
match unsafe { get_iseq_body_type(iseq) } {
|
|
// <main> frame is always associated to TOPLEVEL_BINDING.
|
|
ISEQ_TYPE_MAIN |
|
|
// Kernel#eval uses a heap EP when a Binding argument is not nil.
|
|
ISEQ_TYPE_EVAL => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// Returne the maximum number of arguments for a block in a given function
|
|
fn max_num_params(function: &Function) -> usize {
|
|
let reverse_post_order = function.rpo();
|
|
reverse_post_order.iter().map(|&block_id| {
|
|
let block = function.block(block_id);
|
|
block.params().len()
|
|
}).max().unwrap_or(0)
|
|
}
|
|
|
|
/// Given the number of spill slots needed for a function, return the number of bytes
|
|
/// the function needs to allocate on the stack for the stack frame.
|
|
fn aligned_stack_bytes(num_slots: usize) -> usize {
|
|
// Both x86_64 and arm64 require the stack to be aligned to 16 bytes.
|
|
// Since SIZEOF_VALUE is 8 bytes, we need to round up the size to the nearest even number.
|
|
let num_slots = if num_slots % 2 == 0 {
|
|
num_slots
|
|
} else {
|
|
num_slots + 1
|
|
};
|
|
num_slots * SIZEOF_VALUE
|
|
}
|
|
|
|
impl Assembler {
|
|
/// Make a C call while marking the start and end positions of it
|
|
fn ccall_with_branch(&mut self, fptr: *const u8, opnds: Vec<Opnd>, branch: &Rc<Branch>) -> Opnd {
|
|
// We need to create our own branch rc objects so that we can move the closure below
|
|
let start_branch = branch.clone();
|
|
let end_branch = branch.clone();
|
|
|
|
self.ccall_with_pos_markers(
|
|
fptr,
|
|
opnds,
|
|
move |code_ptr, _| {
|
|
start_branch.start_addr.set(Some(code_ptr));
|
|
},
|
|
move |code_ptr, _| {
|
|
end_branch.end_addr.set(Some(code_ptr));
|
|
},
|
|
)
|
|
}
|
|
}
|
|
|
|
/// Store info about an outgoing branch in a code segment
|
|
#[derive(Debug)]
|
|
struct Branch {
|
|
/// Position where the generated code starts
|
|
start_addr: Cell<Option<CodePtr>>,
|
|
|
|
/// Position where the generated code ends (exclusive)
|
|
end_addr: Cell<Option<CodePtr>>,
|
|
}
|
|
|
|
impl Branch {
|
|
/// Allocate a new branch
|
|
fn new() -> Rc<Self> {
|
|
Rc::new(Branch {
|
|
start_addr: Cell::new(None),
|
|
end_addr: Cell::new(None),
|
|
})
|
|
}
|
|
|
|
/// Regenerate a branch with a given callback
|
|
fn regenerate(&self, cb: &mut CodeBlock, callback: impl Fn(&mut Assembler)) {
|
|
cb.with_write_ptr(self.start_addr.get().unwrap(), |cb| {
|
|
let mut asm = Assembler::new();
|
|
callback(&mut asm);
|
|
asm.compile(cb).unwrap();
|
|
assert_eq!(self.end_addr.get().unwrap(), cb.get_write_ptr());
|
|
});
|
|
}
|
|
}
|