mirror of
https://github.com/ruby/ruby.git
synced 2025-09-19 02:23:59 +02:00

* ext/tk/lib/tkextlib/tile.rb: [incompatible] remove TileWidgets' instate/state/identify method to avoid the conflict with standard widget options. Those methods are renamed to ttk_instate/ttk_state/ ttk_identify (tile_instate/tile_state/tile_identify are available too). Although I don't recommend, if you realy need old methods, please define "Tk::USE_OBSOLETE_TILE_STATE_METHOD = true" before "require 'tkextlib/tile'". * ext/tk/lib/tkextlib/tile.rb: "Tk::Tile::__Import_Tile_Widgets__!" is obsolete. It outputs warning. To control default widget set, use "Tk.default_widget_set = :Ttk". * ext/tk/lib/tk.rb: __IGNORE_UNKNOWN_CONFIGURE_OPTION__ method and __set_IGNORE_UNKNOWN_CONFIGURE_OPTION__!(mode) method are defind as module methods of TkConfigMethod. It may help users to wrap old Ruby/Tk scripts (use standard widgets) to force to use Ttk widgets. Ttk widgets don't have some options of standard widgets which are control the view of widgets. When set ignore-mode true, configure method tries to ignoure such unknown options with no exception. Of course, it may raise other troubles on the GUI design. So, those are a little danger methods. * ext/tk/lib/tk/itemconfig.rb: __IGNORE_UNKNOWN_CONFIGURE_OPTION__ method and __set_IGNORE_UNKNOWN_CONFIGURE_OPTION__!(mode) method are defind as module methods of TkItemConfigMethod as the same purpose as TkConfigMethod's ones. * ext/tk/sample/ttk_wrapper.rb: A new example. This is a tool for wrapping old Ruby/Tk scripts (which use standard widgets) to use Ttk (Tile) widgets as default. * ext/tk/sample/tkextlib/tile/demo.rb: use ttk_instate/ttk_state method instead of instate/state method. * ext/tk/lib/tk/root, ext/tk/lib/tk/namespace.rb, ext/tk/lib/tk/text.rb, ext/tk/lib/tkextlib/*: some 'instance_eval's are replaced to "instance_exec(self)". * ext/tk/lib/tk/event.rb: bug fix on KEY_TBL and PROC_TBL (?x is not a character code on Ruby1.9). * ext/tk/lib/tk/variable.rb: support new style of operation argument on Tcl/Tk's 'trace' command for variables. * ext/tk/sample/demos-jp/widget, ext/tk/sample/demos-en/widget: bug fix * ext/tk/sammple/demos-jp/textpeer.rb, ext/tk/sammple/demos-en/textpeer.rb: new widget demo. * ext/tk/tcltklib.c: decrase SEGV troubles (probably) * ext/tk/lib/tk.rb: remove Thread.critical access if Ruby1.9 * ext/tk/lib/tk/multi-tk.rb: support Ruby1.9 (probably) * ext/tk/lib/tkextlib/tile.rb: add method to define Tcl/Tk command to make Tcl/Tk theme sources (based on different version of Tile extension) available. (Tk::Tile::__define_LoadImages_proc_for_comaptibility__) * ext/tk/lib/tk.rb, ext/tk/lib/tk/wm.rb: support dockable frames (Tcl/Tk8.5 feature). 'wm' command can treat many kinds of widgets as toplevel widgets. * ext/tk/lib/tkextlib/tile/style.rb: ditto. (Tk::Tile::Style.__define_wrapper_proc_for_compatibility__) * ext/tk/lib/tk/font.rb: add actual_hash and metrics_hash to get properties as a hash. metrics_hash method returns a boolean value for 'fixed' option. But metrics method returns numeric value (0 or 1) for 'fixed' option, because of backward compatibility. * ext/tk/lib/tk/timer.rb: somtimes fail to set callback procedure. * ext/tk/lib/tk.rb: add Tk.sleep and Tk.wakeup method. Tk.sleep doesn't block the eventloop. It will be better to use the method in event callbacks. * ext/tk/sample/tksleep_sample.rb: sample script about Tk.sleep. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/branches/ruby_1_8@15849 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
240 lines
8 KiB
Ruby
240 lines
8 KiB
Ruby
# -*- coding: euc-jp -*-
|
|
#
|
|
# This demonstration illustrates how Tcl/Tk can be used to construct
|
|
# simulations of physical systems.
|
|
# (called by 'widget')
|
|
#
|
|
# based on Tcl/Tk8.5a2 widget demos
|
|
|
|
# destroy toplevel widget for this demo script
|
|
if defined?($pendulum_demo) && $pendulum_demo
|
|
$pendulum_demo.destroy
|
|
$pendulum_demo = nil
|
|
end
|
|
|
|
# create toplevel widget
|
|
$pendulum_demo = TkToplevel.new {|w|
|
|
title("Pendulum Animation Demonstration")
|
|
iconname("pendulum")
|
|
positionWindow(w)
|
|
}
|
|
|
|
# create label
|
|
msg = TkLabel.new($pendulum_demo) {
|
|
font $font
|
|
wraplength '4i'
|
|
justify 'left'
|
|
text 'このデモは、物理系のシミュレーションに関わるようなアニメーション実行するために Ruby/Tk をどのように用いることができるかを示しています。左側のキャンバスは単純な振り子である物理系自体のグラフィカル表現であるのに対し、右側のキャンバスは系の位相空間のグラフ(角速度と角度とをプロットしたもの)になっています。左側のキャンバス上でクリックおよびドラッグを行って振り子の重りの位置を変えてみてください。'
|
|
}
|
|
msg.pack('side'=>'top')
|
|
|
|
# create frame
|
|
TkFrame.new($pendulum_demo) {|frame|
|
|
TkButton.new(frame) {
|
|
#text '了解'
|
|
text '閉じる'
|
|
command proc{
|
|
tmppath = $pendulum_demo
|
|
$pendulum_demo = nil
|
|
tmppath.destroy
|
|
}
|
|
}.pack('side'=>'left', 'expand'=>'yes')
|
|
|
|
TkButton.new(frame) {
|
|
text 'コード参照'
|
|
command proc{showCode 'pendulum'}
|
|
}.pack('side'=>'left', 'expand'=>'yes')
|
|
|
|
}.pack('side'=>'bottom', 'fill'=>'x', 'pady'=>'2m')
|
|
|
|
# animated wave
|
|
class PendulumAnimationDemo
|
|
def initialize(frame)
|
|
# Create some structural widgets
|
|
@pane = TkPanedWindow.new(frame).pack(:fill=>:both, :expand=>true)
|
|
# @pane.add(@lf1 = TkLabelFrame.new(@pane, :text=>'Pendulum Simulation'))
|
|
# @pane.add(@lf2 = TkLabelFrame.new(@pane, :text=>'Phase Space'))
|
|
@lf1 = TkLabelFrame.new(@pane, :text=>'Pendulum Simulation')
|
|
@lf2 = TkLabelFrame.new(@pane, :text=>'Phase Space')
|
|
|
|
# Create the canvas containing the graphical representation of the
|
|
# simulated system.
|
|
@c = TkCanvas.new(@lf1, :width=>320, :height=>200, :background=>'white',
|
|
:borderwidth=>2, :relief=>:sunken)
|
|
TkcText.new(@c, 5, 5, :anchor=>:nw,
|
|
:text=>'Click to Adjust Bob Start Position')
|
|
# Coordinates of these items don't matter; they will be set properly below
|
|
@plate = TkcLine.new(@c, 0, 25, 320, 25, :width=>2, :fill=>'grey50')
|
|
@rod = TkcLine.new(@c, 1, 1, 1, 1, :width=>3, :fill=>'black')
|
|
@bob = TkcOval.new(@c, 1, 1, 2, 2,
|
|
:width=>3, :fill=>'yellow', :outline=>'black')
|
|
TkcOval.new(@c, 155, 20, 165, 30, :fill=>'grey50', :outline=>'')
|
|
|
|
# pack
|
|
@c.pack(:fill=>:both, :expand=>true)
|
|
|
|
# Create the canvas containing the phase space graph; this consists of
|
|
# a line that gets gradually paler as it ages, which is an extremely
|
|
# effective visual trick.
|
|
@k = TkCanvas.new(@lf2, :width=>320, :height=>200, :background=>'white',
|
|
:borderwidth=>2, :relief=>:sunken)
|
|
@y_axis = TkcLine.new(@k, 160, 200, 160, 0, :fill=>'grey75', :arrow=>:last)
|
|
@x_axis = TkcLine.new(@k, 0, 100, 320, 100, :fill=>'grey75', :arrow=>:last)
|
|
|
|
@graph = {}
|
|
90.step(0, -10){|i|
|
|
# Coordinates of these items don't matter;
|
|
# they will be set properly below
|
|
@graph[i] = TkcLine.new(@k, 0, 0, 1, 1, :smooth=>true, :fill=>"grey#{i}")
|
|
}
|
|
|
|
# labels
|
|
@label_theta = TkcText.new(@k, 0, 0, :anchor=>:ne,
|
|
:text=>'q', :font=>'Symbol 8')
|
|
@label_dtheta = TkcText.new(@k, 0, 0, :anchor=>:ne,
|
|
:text=>'dq', :font=>'Symbol 8')
|
|
|
|
# pack
|
|
@k.pack(:fill=>:both, :expand=>true)
|
|
|
|
# Initialize some variables
|
|
@points = []
|
|
@theta = 45.0
|
|
@dTheta = 0.0
|
|
@length = 150
|
|
|
|
# animation loop
|
|
@timer = TkTimer.new(15){ repeat }
|
|
|
|
# binding
|
|
@c.bindtags_unshift(btag = TkBindTag.new)
|
|
btag.bind('Destroy'){ @timer.stop }
|
|
btag.bind('1', proc{|x, y| @timer.stop; showPendulum(x.to_i, y.to_i)},
|
|
'%x %y')
|
|
btag.bind('B1-Motion', proc{|x, y| showPendulum(x.to_i, y.to_i)}, '%x %y')
|
|
btag.bind('ButtonRelease-1',
|
|
proc{|x, y| showPendulum(x.to_i, y.to_i); @timer.start },
|
|
'%x %y')
|
|
|
|
btag.bind('Configure', proc{|w| @plate.coords(0, 25, w.to_i, 25)}, '%w')
|
|
|
|
@k.bind('Configure', proc{|h, w|
|
|
h = h.to_i
|
|
w = w.to_i
|
|
@psh = h/2;
|
|
@psw = w/2
|
|
@x_axis.coords(2, @psh, w-2, @psh)
|
|
@y_axis.coords(@psw, h-2, @psw, 2)
|
|
@label_theta.coords(@psw-4, 6)
|
|
@label_dtheta.coords(w-6, @psh+4)
|
|
}, '%h %w')
|
|
|
|
# add
|
|
Tk.update
|
|
@pane.add(@lf1)
|
|
@pane.add(@lf2)
|
|
|
|
# init display
|
|
showPendulum
|
|
|
|
# animation start
|
|
@timer.start(500)
|
|
end
|
|
|
|
# This procedure makes the pendulum appear at the correct place on the
|
|
# canvas. If the additional arguments x, y are passed instead of computing
|
|
# the position of the pendulum from the length of the pendulum rod and its
|
|
# angle, the length and angle are computed in reverse from the given
|
|
# location (which is taken to be the centre of the pendulum bob.)
|
|
def showPendulum(x=nil, y=nil)
|
|
if x && y && (x != 160 || y != 25)
|
|
@dTheta = 0.0
|
|
x2 = x - 160
|
|
y2 = y - 25
|
|
@length = Math.hypot(x2, y2)
|
|
@theta = Math.atan2(x2,y2)*180/Math::PI
|
|
else
|
|
angle = @theta*Math::PI/180
|
|
x = 160 + @length*Math.sin(angle)
|
|
y = 25 + @length*Math.cos(angle)
|
|
end
|
|
|
|
@rod.coords(160, 25, x, y)
|
|
@bob.coords(x-15, y-15, x+15, y+15)
|
|
end
|
|
|
|
# Update the phase-space graph according to the current angle and the
|
|
# rate at which the angle is changing (the first derivative with
|
|
# respect to time.)
|
|
def showPhase
|
|
unless @psw && @psh
|
|
@psw = @k.width/2
|
|
@psh = @k.height/2
|
|
end
|
|
@points << @theta + @psw << -20*@dTheta + @psh
|
|
if @points.length > 100
|
|
@points = @points[-100..-1]
|
|
end
|
|
(0...100).step(10){|i|
|
|
first = - i
|
|
last = 11 - i
|
|
last = -1 if last >= 0
|
|
next if first > last
|
|
lst = @points[first..last]
|
|
@graph[i].coords(lst) if lst && lst.length >= 4
|
|
}
|
|
end
|
|
|
|
# This procedure is the "business" part of the simulation that does
|
|
# simple numerical integration of the formula for a simple rotational
|
|
# pendulum.
|
|
def recomputeAngle
|
|
scaling = 3000.0/@length/@length
|
|
|
|
# To estimate the integration accurately, we really need to
|
|
# compute the end-point of our time-step. But to do *that*, we
|
|
# need to estimate the integration accurately! So we try this
|
|
# technique, which is inaccurate, but better than doing it in a
|
|
# single step. What we really want is bound up in the
|
|
# differential equation:
|
|
# .. - sin theta
|
|
# theta + theta = -----------
|
|
# length
|
|
# But my math skills are not good enough to solve this!
|
|
|
|
# first estimate
|
|
firstDDTheta = -Math.sin(@theta * Math::PI/180) * scaling
|
|
midDTheta = @dTheta + firstDDTheta
|
|
midTheta = @theta + (@dTheta + midDTheta)/2
|
|
# second estimate
|
|
midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
|
|
midDTheta = @dTheta + (firstDDTheta + midDDTheta)/2
|
|
midTheta = @theta + (@dTheta + midDTheta)/2
|
|
# Now we do a double-estimate approach for getting the final value
|
|
# first estimate
|
|
midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
|
|
lastDTheta = midDTheta + midDDTheta
|
|
lastTheta = midTheta + (midDTheta+ lastDTheta)/2
|
|
# second estimate
|
|
lastDDTheta = -Math.sin(lastTheta * Math::PI/180) * scaling
|
|
lastDTheta = midDTheta + (midDDTheta + lastDDTheta)/2
|
|
lastTheta = midTheta + (midDTheta + lastDTheta)/2
|
|
# Now put the values back in our globals
|
|
@dTheta = lastDTheta
|
|
@theta = lastTheta
|
|
end
|
|
|
|
# This method ties together the simulation engine and the graphical
|
|
# display code that visualizes it.
|
|
def repeat
|
|
# Simulate
|
|
recomputeAngle
|
|
|
|
# Update the display
|
|
showPendulum
|
|
showPhase
|
|
end
|
|
end
|
|
|
|
# Start the animation processing
|
|
PendulumAnimationDemo.new($pendulum_demo)
|